Three different aeration plates are used to study their effect on gas holdup and flow regime transition in fiber suspensions. The aeration plates differ by their open-area ratios (A=0.57%, 0.99%, and 2.14%), where the hole diameter remains the same while the number of holes increase. Experiments are performed using three different Rayon fiber lengths (L=3, 6, and 12mm) over a range of superficial gas velocities (Ug18cms) and fiber mass fractions (0C1.8%) in a 15.24cm dia semi-batch bubble column. Experimental results show that the aeration plate with A=0.99% produces the highest gas holdup in an air-water system and low fiber mass fraction suspensions, and the plate with A=2.14% yields the lowest gas holdup in these systems. In medium fiber mass fraction suspensions, the plate with A=0.57% produces slightly higher gas holdup values, while the other two plates yield similar results. The effect of the aeration plate open area on gas holdup diminishes at high fiber mass fractions (C1.2%). All aeration plates generate homogeneous, transitional, and heterogeneous flow regimes over the range of superficial gas velocities for air-water and low fiber mass fraction suspensions. However, the aeration plate with A=2.14% enhances the flow regime transition, i.e., the superficial gas velocity at which transitional flow appears is lower. Additionally, the fiber mass fraction at which pure heterogeneous flow is observed is lower when A=2.14%.

1.
Zahradnik
,
J.
,
Kuncova
,
G.
, and
Fialova
,
M.
, 1999, “
The Effect of Surface Active Additives on Bubble Coalescence and Gas Holdup in Viscous Aerated Batches
,”
Chem. Eng. Sci.
0009-2509,
54
(
13–14
), pp.
2401
2408
.
2.
Kluytmans
,
J. H. J.
,
van Wachem
,
B. G. M.
,
Kuster
,
B. M.
, and
Schouten
,
J. C.
, 2001, “
Gas Holdup in a Slurry Bubble Column: Influence of Electrolyte and Carbon Particles
,”
Ind. Eng. Chem. Res.
0888-5885,
40
(
23
), pp.
5326
5333
.
3.
Zahradnik
,
J.
,
Fialova
,
M.
,
Ruzicka
,
M.
,
Drahos
,
J.
,
Kastanek
,
F.
, and
Thomas
,
N. H.
, 1997, “
Duality of the Gas-Liquid Flow Regimes in Bubble Column Reactors
,”
Chem. Eng. Sci.
0009-2509,
52
(
21–22
), pp.
3811
3826
.
4.
Krishna
,
R.
,
Urseanu
,
M. I.
,
de Swart
,
J. W. A.
, and
Ellenberger
,
J.
, 2000, “
Gas Hold-up in Bubble Columns: Operation With Concentrated Slurries Versus High Viscosity Liquid
,”
Can. J. Chem. Eng.
0008-4034,
78
(
3
), pp.
442
448
.
5.
Al-Masry
,
W. A.
, 2001, “
Gas Holdup in Circulating Bubble Columns With Pseudoplastic Liquids
,”
Chem. Eng. Technol.
0930-7516,
24
(
1
), pp.
71
76
.
6.
Schafer
,
R.
,
Merten
,
C.
, and
Eigenberger
,
G.
, 2002, “
Bubble Size Distributions in a Bubble Column Reactor Under Industrial Conditions
,”
Exp. Therm. Fluid Sci.
0894-1777,
26
(
6–7
), pp.
595
604
.
7.
Jamialahmadi
,
M.
, and
Muller-Steinhagen
,
H.
, 1991, “
Effect of Solid Particles on Gas Hold-up in Bubble-Columns
,”
Can. J. Chem. Eng.
0008-4034,
69
(
1
), pp.
390
393
.
8.
Banisi
,
S.
,
Finch
,
J. A.
,
Laplante
,
A. R.
, and
Weber
,
M. E.
, 1995, “
Effect of Solid Particles on Gas Holdup in Flotation Columns. 1. Measurement
,”
Chem. Eng. Sci.
0009-2509,
50
(
14
), pp.
2329
2334
.
9.
Krishna
,
R.
,
De Swart
,
J. W. A.
,
Ellenberger
,
J.
,
Martina
,
G. B.
, and
Maretto
,
C.
, 1997, “
Gas Holdup in Slurry Bubble Columns: Effect of Column Diameter and Slurry Concentrations
,”
AIChE J.
0001-1541,
43
(
2
), pp.
311
316
.
10.
Gandhi
,
B.
,
Prakash
,
A.
, and
Bergougnou
,
M. A.
, 1999, “
Hydrodynamic Behavior of Slurry Bubble Column at High Solids Concentrations
,”
Powder Technol.
0032-5910,
103
(
2
), pp.
80
94
.
11.
Chen
,
C. M.
, and
Leu
,
L. P.
, 2002, “
Flow Regimes and Radial Gas Holdup Distribution in Three-Phase Magnetic Fluidized Beds
,”
Ind. Eng. Chem. Res.
0888-5885,
41
(
7
), pp.
1877
1884
.
12.
Walmsley
,
M. R. W.
, 1992, “
Air Bubble Motion in Wood Pulp Fiber Suspension
,”
Appita J.
,
45
, pp.
509
515
.
13.
Went
,
J.
,
Jamialahmadi
,
M.
, and
Muller-Steinhagen
,
H.
, 1993, “
Effect of Wood Pulp Fiber Concentration on Gas Holdup in Bubble Column
,”
Chem.-Ing.-Tech.
0009-286X,
63
(
3
), pp.
306
308
.
14.
Lindsay
,
J. D.
,
Ghiaasiaan
,
S. M.
, and
Abdel-Khalik
,
S. I.
, 1995, “
Macroscopic Flow Structures in a Bubbling Paper Pulp-Water Slurry
,”
Ind. Eng. Chem. Res.
0888-5885,
34
(
10
), pp.
3342
3354
.
15.
Schulz
,
T. H.
, and
Heindel
,
T. J.
, 2000, “
A Study of Gas Holdup in Cocurrent Air∕Water∕Fiber System
,”
Tappi J.
0734-1415,
83
(
6
), pp.
58
69
.
16.
Su
,
X.
, and
Heindel
,
T. J.
, 2003, “
Gas Holdup in a Fiber Suspension
,”
Can. J. Chem. Eng.
0008-4034,
81
(
3–4
), pp.
412
418
.
17.
Xie
,
T.
,
Ghiaasiaan
,
S. M.
,
Karrila
,
S.
, and
McDonough
,
T.
, 2003, “
Flow Regimes and Gas Holdup in Paper Pulp-Water-Gas Three-Phase Slurry Flow
,”
Chem. Eng. Sci.
0009-2509,
58
(
8
), pp.
1417
1430
.
18.
Bennington
,
C. P. J.
, 1993, “
Mixing Gases into Medium Consistency Pulp Suspensions Using Rotary Devices
,”
Tappi J.
0734-1415,
76
(
7
), pp.
77
86
.
19.
Heindel
,
T. J.
, 2000, “
Gas Flow Regime Changes in a Bubble Column Filled With a Fiber Suspension
,”
Can. J. Chem. Eng.
0008-4034,
78
(
5
), pp.
1017
1022
.
20.
Heindel
,
T. J.
, 2002, “
Bubble Size in a Cocurrent Fiber Slurry
,”
Ind. Eng. Chem. Res.
0888-5885,
41
(
3
), pp.
632
641
.
21.
Ohki
,
Y.
, and
Inoue
,
H.
, 1970, “
Longitudinal Mixing of the Liquid Phase in Bubble Columns
,”
Chem. Eng. Sci.
0009-2509,
25
(
1
), pp.
1
16
.
22.
Tsuchiya
,
K.
, and
Nakanishi
,
O.
, 1992, “
Gas Holdup Behavior in a Tall Bubble Column With Perforated Plate Distributors
,”
Chem. Eng. Sci.
0009-2509,
47
(
13–14
), pp.
3347
3354
.
23.
Zahradnik
,
J.
, and
Kastanek
,
F.
, 1979, “
Gas Holdup in Uniformly Aerated Bubble Column Reactors
,”
Chem. Eng. Commun.
0098-6445,
3
, pp.
413
429
.
24.
Shnip
,
A. I.
,
Kolhatkar
,
R. V.
,
Swamy
,
D.
, and
Joshi
,
J. B.
, 1992, “
Criteria for the Transition From the Homogeneous to the Heterogeneous Regime in 2-Dimensional Bubble Column Reactors
,”
Int. J. Multiphase Flow
0301-9322,
18
(
5
), pp.
705
726
.
25.
Kawasaki
,
H.
, and
Tanaka
,
H.
, 1995, “
Effects of Geometric Properties for a Perforated Plate on Gas Holdup in a Bubble Column
,”
J. Chem. Eng. Jpn.
0021-9592,
28
(
6
), pp.
715
720
.
26.
Solanki
,
M. K. S.
,
Mukherjee
,
A. K.
, and
Das
,
T. R.
, 1992, “
Bubble Formation at Closely Spaced Orifices in Aqueous-Solutions
,”
Chem. Eng. J.
0300-9467,
49
(
1
), pp.
65
71
.
27.
Zahradnik
,
J.
, and
Kastanek
,
F.
, 1978, “
Effect of Gas-Distribution on Hydrodynamic Parameters of a Bubble Bed
,”
Collect. Czech. Chem. Commun.
0010-0765,
43
(
1
), pp.
216
223
.
28.
Ruzicka
,
M.
,
Drahos
,
J.
,
Zahradnik
,
J.
, and
Thomas
,
N. H.
, 2000, “
Structure of Gas Pressure Signal at Two-Orifice Bubbling from a Common Plenum
,”
Chem. Eng. Sci.
0009-2509,
55
(
2
), pp.
421
429
.
29.
Ruzicka
,
M.
,
Drahos
,
J.
,
Zahradnik
,
J.
, and
Thomas
,
N. H.
, 1999, “
Natural Modes of Multi-Orifice Bubbling From a Common Plenum
,”
Chem. Eng. Sci.
0009-2509,
54
(
21
), pp.
5223
5229
.
30.
Haug
,
H. F.
, 1976, “
Stability of Sieve Trays With High Overflow Weirs
,”
Chem. Eng. Sci.
0009-2509,
31
(
4
), pp.
295
307
.
31.
Miyahara
,
T.
,
Haga
,
H.
, and
Takahashi
,
T.
, 1983, “
Bubble Formation From an Orifice at High Gas Flow Rates
,”
Int. Chem. Eng.
0020-6318,
23
(
3
), pp.
524
531
.
32.
Xie
,
S. Y.
, and
Tan
,
R. B. H.
, 2003, “
Bubble Formation at Multiple Orifices: Bubbling Synchronicity and Frequency
,”
Chem. Eng. Sci.
0009-2509,
58
(
20
), pp.
4639
4647
.
33.
Li
,
H. A. Z.
, 1999, “
Bubbles in Non-Newtonian Fluids: Formation, Interactions and Coalescence
,”
Chem. Eng. Sci.
0009-2509,
54
(
13–14
), pp.
2247
2254
.
34.
Zuber
,
N.
, and
Findlay
,
J. D.
, 1965, “
Average Volumetric Concentration in Two Phase Flow Systems
,”
ASME J. Heat Transfer
0022-1481,
87
, pp.
453
468
.
35.
Vial
,
C.
,
Camarasa
,
E.
,
Poncin
,
S.
,
Wild
,
G.
,
Midoux
,
N.
, and
Bouillard
,
J.
, 2000, “
Study of Hydrodynamic Behaviour in Bubble Columns and External Loop Airlift Reactors Through Analysis of Pressure Fluctuations
,”
Chem. Eng. Sci.
0009-2509,
55
(
15
), pp.
2957
2973
.
36.
Chen
,
R. C.
,
Reese
,
J.
, and
Fan
,
L. S.
, 1994, “
Flow Structure in a 3-Dimensional Bubble-Column and 3-Phase Fluidized-Bed
,”
AIChE J.
0001-1541,
40
(
7
), pp.
1093
1104
.
37.
Shen
,
G.
, and
Finch
,
J. A.
, 1996, “
Bubble Swarm Velocity in a Column
,”
Chem. Eng. Sci.
0009-2509,
51
(
14
), pp.
3665
3674
.
38.
Ruzicka
,
M. C.
,
Zahradnik
,
J.
,
Drahos
,
J.
, and
Thomas
,
N. H.
, 2001, “
Homogeneous-Heterogeneous Regime Transition in Bubble Columns
,”
Chem. Eng. Sci.
0009-2509,
56
(
15
), pp.
4609
4626
.
39.
Valencia
,
A.
,
Cordova
,
M.
, and
Ortega
,
J.
, 2002, “
Numerical Simulation of Gas Bubbles Formation at a Submerged Orifice in a Liquid
,”
Int. Commun. Heat Mass Transfer
0735-1933,
29
(
6
), pp.
821
830
.
40.
Li
,
H.
, and
Prakash
,
A.
, 2000, “
Influence of Slurry Concentrations on Bubble Population and Their Rise Velocities on a Three-Phase Slurry Bubble Column
,”
Powder Technol.
0032-5910,
113
, pp.
158
167
.
41.
Bennington
,
C. P. J.
,
Kerekes
,
R. J.
, and
Grace
,
J. R.
, 1990, “
The Yield Stress of Fiber Suspensions
,”
Can. J. Chem. Eng.
0008-4034,
68
(
5
), pp.
748
757
.
You do not currently have access to this content.