We present new experimental results on the interfacial instabilities and breakup of Newtonian liquid drops suddenly exposed to rarefied, high-speed (Mach 3) air flows. The experimental approach allows for the first time detailed observation of interfacial phenomena and mixing throughout the breakup cycle over a wide range of Weber numbers. Key findings are that Rayleigh-Taylor instability alone is the active mechanism for freestream Weber numbers as low as 28 for low viscosity liquids and that stripping rather than piercing is the asymptotic regime as We. This and other detailed visual evidence over 26<We<2,600 are uniquely suitable for testing Computational Fluid Dynamics (CFD) simulations on the way to basic understanding of aerobreakup over a broad range of conditions.

1.
Hinze
,
J. O.
,
1955
, “
Fundamentals of the hydrodynamic mechanism of splitting in dispersion processes
,”
AIChE J.
,
1
, pp.
289
295
.
2.
Harper
,
E. Y.
,
Grube
,
G. W.
, and
Chang
,
I.-D.
,
1972
, “
On the breakup of accelerating liquid drops
,”
J. Fluid Mech.
,
52
, pp.
565
591
.
3.
Joseph
,
D. D.
,
Belanger
,
J.
, and
Beavers
,
G. S.
,
1999
, “
Breakup of a liquid suddenly exposed to a high-speed airstream
,”
Int. J. Multiphase Flow
,
25
, pp.
1263
1303
.
4.
Gel’fand
,
B. E.
,
1996
, “
Droplet breakup phenomena in flows with velocity lag
,”
Prog. Energy Combust. Sci.
,
22
, pp.
201
265
.
5.
Patel
,
B. D.
, and
Theofanous
,
T. G.
,
1981
, “
Hydrodynamic fragmentation of drops
,”
J. Fluid Mech.
,
103
, pp.
207
223
.
6.
Seghal
,
B. R.
,
Nourgaliev
,
R. R.
, and
Dinh
,
T. N.
,
1999
, “
Numerical simulation of droplet deformation and break-up by a Lattice-Boltzman method
,”
Progress in Nuclear Energy
,
34
, pp.
471
488
.
7.
Han
,
J.
, and
Tryggvason
,
G.
,
1999
, “
Secondary breakup of axisymmetric liquid drops. I. Acceleration by a constant body force
,”
Phys. Fluids
,
11
, pp.
3650
3668
.
8.
Wierzba
,
A.
,
1990
, “
Deformation and Breakup of liquid drops in a gas stream at nearly critical Weber number
,”
Exp. Fluids
,
9
, pp.
59
64
.
9.
Shraiber
,
A. A.
,
Poduystotsky
,
A. M.
, and
Dubrovsky
,
V. V.
,
1996
, “
Deformation and breakup of drops by aerodynamic forces
,”
Atomization Sprays
,
6
, pp.
667
692
.
10.
Hanson
,
A. R.
,
Domich
,
E. G.
, and
Adams
,
H. S.
,
1963
, “
Shock tube investigation of the breakup of drops by air blasts
,”
Phys. Fluids
,
6
, pp.
1070
1080
.
11.
Krzeczkowski
,
S. A.
,
1980
, “
Measurement of liquid droplet disintegration mechanisms
,”
Int. J. Multiphase Flow
,
6
, pp.
227
239
.
12.
Hsiang
,
L.-P.
, and
Faeth
,
G. M.
,
1992
, “
Near-limit drop deformation and secondary breakup
,”
Int. J. Multiphase Flow
,
18
, pp.
635
652
.
13.
Chou
,
W.-H.
, and
Faeth
,
G. M.
,
1998
, “
Temporal properties of secondary drop breakup in the bag breakup
,”
Int. J. Multiphase Flow
,
24
, pp.
889
912
.
14.
Dai
,
Z.
, and
Faeth
,
G. M.
,
2001
, “
Temporal properties of secondary drop breakup in the multimode breakup regime
,”
Int. J. Multiphase Flow
,
27
, pp.
217
236
.
15.
Gel’fand
,
B. E.
,
Gubin
,
S. A.
, and
Kogarko
,
S. M.
,
1974
, “
Various forms of drop fractionation in shock waves and their special characteristics
,”
Inzh.-Fiz. Zh.
,
27
, pp.
119
126
.
16.
Hirahara
,
H.
, and
Kawahashi
,
M.
,
1992
, “
Experimental investigation of viscous effects upon a breakup of droplets in high-speed air flow
,”
Exp. Fluids
,
13
, pp.
423
428
.
17.
Engel
,
O. G.
,
1958
, “
Fragmentation of water drops in the zone behind an air shock
,”
J. Res. Natl. Bur. Stand.
,
60
, pp.
245
280
.
18.
Ranger
,
A. A.
, and
Nicholls
,
J. A.
,
1969
, “
Aerodynamic shattering of liquid drops
,”
AIAA J.
,
7
, pp.
285
290
.
19.
Waldman
,
G. D.
, and
Reinecke
,
W.
,
1972
, “
Raindrop breakup in the shock layer of a high-speed vehicle
,”
AIAA J.
,
10
, pp.
1200
1204
.
20.
Simpkins
,
P. G.
, and
Bales
,
E. L.
,
1972
, “
Water-drop response to sudden accelerations
,”
J. Fluid Mech.
,
55
, pp.
629
639
.
21.
Anderson, Jr, J. D., 2001, Fundamentals of aerodynamics, Third Edition, McGraw-Hill, London, pp. 495–497.
22.
Chandrasekhar, S., 1981, Hydrodynamic and hydromagnetic stability, Dover Publication, Inc., New York, pp. 441–443.
23.
Dinh, T. N., Li, G. J. and Theofanous, T. G., 2003, “An Investigation of Droplet Breakup in a High Mach, Low Weber Number Regime,” 41st Aerospace Sciences Meeting, Reno, Nevada, January 5–8, 2003. Paper AIAA-2003-0317.
24.
Pilch
,
M.
, and
Erdman
,
C. A.
,
1987
, “
Use of breakup time data and velocity history data to predict the maximum size of stable fragments for acceleration-induced breakup of a liquid drop
,”
Int. J. Multiphase Flow
,
13
, pp.
741
757
.
25.
Joseph
,
D. D.
,
Beavers
,
G. S.
, and
Funada
,
T.
,
2002
, “
Rayleigh-Taylor instability of viscoelastic drops at high Weber numbers
,”
J. Fluid Mech.
,
453
, pp.
109
132
.
26.
Taylor, G. I., 1949, “The shape and acceleration of a drop in a high-speed air stream,” The Scientific Papers of Sir Geoffrey Ingram Taylor, 3, Batchelor, G. K. (Ed.), University Press, Cambridge, 1963.
You do not currently have access to this content.