A numerical method based on the distributed Lagrange multiplier method (DLM) is developed for the direct simulation of electrorheological (ER) liquids subjected to spatially nonuniform electric field. The flow inside particle boundaries is constrained to be rigid body motion by the distributed Lagrange multiplier method and the electrostatic forces acting on the particles are obtained using the point-dipole approximation. The numerical scheme is verified by performing a convergence study which shows that the results are independent of mesh and time step sizes. The dynamical behavior of ER suspensions subjected to nonuniform electric field depends on the solids fraction, the ratio of the domain size and particle radius, and four additional dimensionless parameters which respectively determine the importance of inertia, viscous, electrostatic particle-particle interaction and dielectrophoretic forces. For inertia less flows a parameter defined by the ratio of the dielectrophoretic and viscous forces, determines the time duration in which the particles collect near either the local maximums or local minimums of the electric field magnitude, depending on the sign of the real part of the Clausius-Mossotti factor. In a channel subjected to a given nonuniform electric field, when the applied pressure gradient is smaller than a critical value, the flow assists in the collection of particles at the electrodes, but when the pressure gradient is above this critical value the particles are swept away by the flow.

1.
Winslow
,
M. W.
,
1949
, “
Induced Fibration of Suspensions
,”
J. Appl. Phys.
,
20
, pp.
1137
1140
.
2.
Jones, T. B., 1995, “Electromechanics of Particles,” Cambridge University Press, New York City, NY.
3.
Pohl, H. A., 1978, “Dielectrophoresis,” Cambridge University Press, Cambridge.
4.
Klass
,
D. L.
, and
Martinek
,
T. W.
,
1967
, “
Electroviscous Fluids. II. Electrical Properties
,”
J. Appl. Phys.
,
38
, pp.
75
80
.
5.
Uejima
,
H.
,
1972
, “
Dielectric Mechanism and Rheological Properties of Electrofluids
,”
Japanese Journal of Applied Physics
,
11
, pp.
319
326
.
6.
Stangroom
,
J. E.
,
1991
, “
Basic Considerations in Flowing Electrorheological Fluids
,”
J. Stat. Phys.
,
64
, pp.
1059
1072
.
7.
Stangroom
,
J. E.
,
1996
, “
Basic Observations on Electrorheological Fluids
,”
J. Intell. Mater. Syst. Struct.
,
7
, pp.
479
483
.
8.
Marshall
,
L.
,
Goodwin
,
J. W.
, and
Zukoski
,
C. F.
,
1989
, “
Effects of Electric Fields on the Rheology of Nonaqueous Concentrated Suspensions
,”
Journal of Chemical Society Faraday Transactions I
,
85
, pp.
2785
2795
.
9.
Gast
,
A. P.
, and
Zukoski
,
C. F.
,
1990
, “
Electrorheological Fluids as Colloidal Suspensions
,”
Adv. Colloid Interface Sci.
,
30
, pp.
153
202
.
10.
Zukoski
,
C. F.
,
1993
, “
Material Properties and the Electrorheological Response
,”
Annu. Rev. Mater. Sci.
,
23
, pp.
45
78
.
11.
Anderson
,
R. A.
,
1994
, “
Electrostatic Forces in an Ideal Spherical-Particle Electrorheological Fluid
,”
Langmuir
,
10
, pp.
2917
2928
.
12.
Klingenberg
,
D. J.
,
van Swol
,
S.
, and
Zukoski
,
C. F.
,
1991
, “
The Small Shear Rate Response of Electrorheological Suspensions. I. Simulation in the Point-Dipole Limit
,”
J. Chem. Phys.
,
94
, pp.
6160
6167
.
13.
Klingenberg
,
D. J.
,
van Swol
,
S.
, and
Zukoski
,
C. F.
,
1989
, “
Simulation of Electrorheological Suspensions
,”
J. Chem. Phys.
,
91
, pp.
7888
7895
.
14.
Klingenberg
,
D. J.
,
Zukoski
,
C. F.
, and
Hill
,
J. C.
,
1993
, “
Kinetics of Structure Formation in Electrorheological Suspensions
,”
J. Appl. Phys.
,
73
, pp.
4644
4648
.
15.
Bonnecaze
,
R. T.
, and
Brady
,
J. F.
,
1992
, “
Yield Stresses in Electrorheological Fluids
,”
J. Rheol.
,
36
, pp.
73
115
.
16.
Bonnecaze
,
R. T.
, and
Brady
,
J. F.
,
1992
, “
Dynamic Simulation of an Electrorheological Suspension
,”
J. Chem. Phys.
,
96
, pp.
2183
2204
.
17.
Brady
,
J. F.
, and
Bossis
,
G.
,
1988
, “
Stokesian Dynamics
,”
Annu. Rev. Fluid Mech.
,
20
, pp.
111
157
.
18.
Brady
,
J. F.
,
Phillips
,
R. J.
,
Lester
,
J. C.
, and
Bossis
,
G.
,
1988
, “
Dynamic Simulation of Hydrodynamically Interacting Suspensions
,”
J. Fluid Mech.
,
195
, pp.
257
280
.
19.
Davis
,
L. C.
,
1992
, “
Polarization Forces and Conductivity Effects in Electrorheological Fluids
,”
J. Appl. Phys.
,
72
, pp.
1334
1340
.
20.
Wang
,
X.
,
Wang
,
Xiao-Bo
, and
Gascoyne
,
P. R. C.
,
1997
, “
General Expressions for Dielectrophoretic Force and Electrorotational Torque Derived Using the Maxwell Stress Tensor Method
,”
J. Electrost.
,
39
, pp.
277
295
.
21.
Dussaud
,
A. D.
,
Khusid
,
B.
, and
Acrivos
,
A.
,
2000
, “
Particle Segregation in Suspensions Subject to High-Gradient ac Electric Fields
,”
J. Appl. Phys.
,
88
, pp.
5463
5473
.
22.
Green
,
N. G.
,
Ramos
,
A.
, and
Morgan
,
H.
,
2002
, “
Numerical Solution of the Dielectrophoretic and Traveling Wave Forces for Interdigitated Electrode Arrays Using the Finite Element Method
,”
J. Electrost.
,
56
, pp.
235
254
.
23.
Heida
,
T.
,
Rutten
,
W. L. C.
, and
Marani
,
E.
,
2002
, “
Understanding Dielectrophoretic Trapping of Neuronal Cells: Modelling Electric Field, Electrode-Liquid Interface and Fluid Flow
,”
J. Phys. D
,
35
, pp.
1592
1602
.
24.
Jones
,
T. B.
, and
Washizu
,
M.
,
1996
, “
Multipolar Dielectrophoretic and Electrorotation Theory
,”
J. Electrost.
,
37
, pp.
121
134
.
25.
Ramos
,
A.
,
Morgan
,
H.
,
Green
,
N. G.
, and
Castellanos
,
A.
,
1999
, “
The Role of Electrohydrodynamic Forces in the Dielectrophoretic Manipulation and Separation of Particles
,”
J. Electrost.
,
47
, pp.
71
81
.
26.
Khusid
,
B.
, and
Acrivos
,
A.
,
1996
, “
Effects of Interparticle Electric Interactions on Dielectrophoresis in Colloidal Suspensions
,”
Physics Review E
,
54
, pp.
5428
5435
.
27.
Kadaksham, J., Singh, P., and Aubry, N., “Dynamics of Particles in Electrorheological Fluids Subjected to Dielectrophoretic Forces,” To be submitted to J. of Fluids Eng.
28.
Glowinski
,
R. T.
,
Pan
,
W.
,
Hesla
,
T. I.
, and
Joseph
,
D. D.
,
1998
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
Int. J. Multiphase Flow
,
25
, pp.
755
794
.
29.
Singh
,
P.
,
Joseph
,
D. D.
,
Hesla
,
T. L.
,
Glowinski
,
R. T.
, and
Pan
,
W.
,
2000
, “
A Distributed Lagrange Multiplier/Fictitious Domain Method for Particulate Flows
,”
J. Non-Newtonian Fluid Mech.
,
91
, pp.
165
188
.
You do not currently have access to this content.