The viscous flow in a curved tube with partial slip on the boundary occurs in many practical situations. The problem is formulated in curved tube coordinates and solved by perturbation for small curvature. The mutual interaction of slip, curvature, and inertia causes changes in the axial flow, surface shear, and secondary flow. It is found that the net flow increases with increased slip and decreased Reynolds numbers.

1.
Berger
,
S. A.
, and
Talbot
,
L.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Rev. Fluid Mech.
,
15
, pp.
461
502
.
2.
Sharipov
,
F.
, and
Seleznev
,
V.
,
1998
, “
Data on Internal Rarefied Gas Flows
,”
J. Phys. Chem. Ref. Data
,
27
, pp.
657
706
.
3.
Navier
,
C. L. M.
,
1827
, “
Sur les lois du mouvement des fluids
,”
C.R. Acad. Sci.
,
6
, pp.
389
440
.
4.
Kennard, E. H., 1938, Kinetic Theory of Gases, MaGraw-Hill, New York, Chap. 8.
5.
Nicola, P. D., Maggi, G., Tassi, G., 1983, Microcirculation-An Altas, Schattauer, Stuttgart.
6.
Dean
,
W. R.
,
1927
, “
Note on the Motion of a Fluid in a Curved Pipe
,”
Philos. Mag.
,
4
, pp.
208
233
.
7.
Batchelor, G. K., 1967, An Introduction to Fluid Dynamics, Cambridge Univ. Press, Cambridge, UK, Appendix 2.
8.
Topakoglu
,
H. C.
,
1967
, “
Steady Laminar Flows of an Incompressible Viscous Fluid in Curved Pipes
,”
J. Math. Mech.
,
16
, pp.
1321
1337
.
9.
Wang
,
C. Y.
,
1981
, “
On the Low Reynolds Number Flow in a Helical Pipe
,”
J. Fluid Mech.
,
108
, pp.
185
194
.
10.
Wang
,
C. Y.
,
1980
, “
Flow in Narrow Curved Channels
,”
ASME J. Appl. Mech.
,
47
, pp.
7
10
.
11.
Sarkar
,
K.
, and
Prosperetti
,
A.
,
1996
, “
Effective Boundary Conditions for Stokes Flow Over a Rough Surface
,”
J. Fluid Mech.
,
316
, pp.
223
240
.
You do not currently have access to this content.