The two-dimensional low-speed structure of a turbulent boundary layer has been clearly visualized by a combination of a shear stress sensor using micro electro mechanical systems and the discrete wavelet transform. The application of two-dimensional discrete wavelet transforms to the visualization of wall shear stress data obtained using the micro shear stress imaging chip is described. The experiment was carried out under various Reynolds number conditions. It is shown that it is possible to visualize the low-speed streak structure as contours of two-dimensional wavelet level corresponding to spanwise wave number as a function of Reynolds number.

1.
Kim
,
H. T.
,
Kline
,
S. J.
, and
Reynolds
,
W. C.
,
1971
, “
The Production of Turbulence Near a Smooth Wall in a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
50, Part 1
, pp.
133
160
.
2.
Falco, R., 1980, “The Production of Turbulence Near a Wall,” AIAA Paper No. 80-1356.
3.
Cantwell
,
B. J.
,
1981
, “
Organized Motion in Turbulent Flow
,”
Annu. Rev. Fluid Mech.
,
13
, pp.
457
515
.
4.
Head
,
M. R.
, and
Bandyopadhyay
,
P.
,
1981
, “
New Aspects of Turbulent Boundary-Layer Structure
,”
J. Fluid Mech.
,
107
, pp.
297
338
.
5.
Smith
,
C. R.
, and
Metzler
,
S. P.
,
1983
, “
The Characteristics of Low-Speed Streaks in the Near-Wall Region of a Turbulent Boundary Layer
,”
J. Fluid Mech.
,
129
, pp.
27
54
.
6.
Kim
,
J.
,
Moin
,
P.
, and
Moser
,
R.
,
1987
, “
Turbulent Statistics in Fully Developed Channel Flow at Low Reynolds Number
,”
J. Fluid Mech.
,
177
, pp.
133
166
.
7.
Alfredsson
,
P. H.
,
Johansson
,
A. V.
,
Haritonidis
,
J. H.
, and
Eckelmann
,
H.
,
1988
, “
The Fluctuating Wall-Shear Stress and the Velocity Field in the Viscous Sublayer
,”
Phys. Fluids
,
31
, pp.
1026
1033
.
8.
Bruun, H. H., 1995, “Hot-Wire Anemometry,” Oxford University Press, Oxford, UK, pp. 272–286.
9.
Naqwi
,
A. A.
, and
Reynolds
,
W. C.
,
1991
, “
Measurement of Turbulent Wall Velocity Gradients Using Cylindrical Waves of Laser Light
,”
Exp. Fluids
,
10
, pp.
257
266
.
10.
Ho, C. M., Tung, S., and Tai, Y. C., 1996, “Interactive Control of Wall Structures by MEMS-Based Transducers,” Advances in Turbulence, Proceedings of the Sixth European Turbulence Conference, Lausanne, Switzerland, July, p. 413.
11.
Tung, S., Hong, H., Huang, J. B., Ho, C. M., Liu, C., and Tai, Y. C., 1995, “Control of a Streamwise Vortex by a Mechanical Actuator,” Proceedings of 10th Symposium on Turbulent Shear Flows, 1, Pennsylvania, Aug., pp. 1–19.
12.
Ho, C. M., Tung, S., Lee, G. B., Tai, Y. C., Jiang, F., and Tsao, T., 1997, “MEMS-A Technology for Advancements in Aerospace Engineering,” AIAA Paper No. 97-0545.
13.
Kimura, M., Tung, S., Ho, C. M., Jiang, F., and Tai, Y. C., 1997, “MEMS for Aerodynamic Control,” 28th AIAA Fluid Dynamics Conference, AIAA Paper No. 97-2118.
14.
Morlet
,
F.
,
1982
, “
Wavelets Propagation and Sampling Theory
,”
Geophysics
,
47
, pp.
203
236
.
15.
Everson
,
R.
, and
Sirovich
,
L.
,
1990
, “
Wavelets Analysis to the Turbulence Jet
,”
Phys. Lett.
,
145
, pp.
314
322
.
16.
Dallard
,
T.
, and
Spedding
,
G. R.
,
1993
, “
2-D Wavelet Transforms: Generalisation of the Hardy Space and Application to Experimental Studies
,”
Eur. J. Mech. B/Fluids
,
12
, pp.
107
134
.
17.
Katul
,
G.
, and
Vidakovic
,
B.
,
1998
, “
Identification of Low-Dimensional Energy-Containing/Flux Transporting Eddy Motion in the Atmospheric Surface Layer Using Wavelet Thresholding Methods
,”
J. Atmos. Sci.
,
55
, pp.
377
389
.
18.
Saito
,
Y.
,
1996
, “
Wavelets Analysis for Computational Electromagnetics, (in Japanese)
,”
Trans. Inst. Electr. Eng. Jpn., Part A
,
116A
, pp.
833
839
.
19.
Jiang, F., Tai, Y. C., Gupta, B., Goodman, R., Tung, S., Huang, J. B., and Ho, C. M., 1996, “A Surface-Micromachined Shear Stress Imager,” Proceedings of the 9th International IEEE Workshop on MEMS, San Diego, CA, p. 110.
20.
Huang
,
J. B.
,
Tung
,
S.
,
Ho
,
C. H.
,
Liu
,
C.
, and
Tai
,
Y. C.
,
1996
, “
Improved Micro Thermal Shear-Stress Sensor
,”
IEEE Trans. Instrum. Meas.
,
45
, pp.
570
570
.
21.
Hussain, A. K. M. F., and Reynolds, W. C., 1970, “The Mechanics of a Perturbation Wave in Turbulent Shear Flow,” Air Force Office of Scientific Report, 70-1655TR, pp. 29–33.
22.
Kimura
,
M.
,
Tung
,
S.
,
Lew
,
J.
,
Ho
,
C. M.
,
Jiang
,
F.
, and
Tai
,
Y. C.
,
1999
, “
Measurements of Wall Shear Stress of a Turbulent Boundary Layer using a Micro-Shear-Stress Imaging Chip
,”
Fluid Dyn. Res.
,
24
, pp.
329
342
.
23.
Obi, S., Inoue, K., Furukawa, T., and Masuda, S., 1995, “Experimental Study on the Statistics of Wall Shear Stress in Turbulent Channel Flows,” Proceedings of 10th Symposium on Turbulent Shear Flows, 1, pp. 5-19–5-24.
24.
Moin
,
P.
, and
Kim
,
J.
,
1982
, “
Numerical Investigation of Turbulent Channel Flow
,”
J. Fluid Mech.
,
118
, pp.
341
377
.
25.
Kline
,
S. J.
,
Reynolds
,
W. C.
,
Schraub
,
F. A.
, and
Runstadler
,
P. W.
,
1967
, “
The Structure of Turbulent Boundary Layers
,”
J. Fluid Mech.
,
30
, pp.
741
773
.
You do not currently have access to this content.