An implementation of the approximate statistical moment method for uncertainty propagation and robust optimization for quasi 1-D Euler CFD code is presented. Given uncertainties in statistically independent, random, normally distributed input variables, first-and second-order statistical moment procedures are performed to approximate the uncertainty in the CFD output. Efficient calculation of both first- and second-order sensitivity derivatives is required. In order to assess the validity of the approximations, these moments are compared with statistical moments generated through Monte Carlo simulations. The uncertainties in the CFD input variables are also incorporated into a robust optimization procedure. For this optimization, statistical moments involving first-order sensitivity derivatives appear in the objective function and system constraints. Second-order sensitivity derivatives are used in a gradient-based search to successfully execute a robust optimization. The approximate methods used throughout the analyses are found to be valid when considering robustness about input parameter mean values.

1.
Newman, P. A., Hou, G. J.-W., and Taylor, A. C., III, 1997 “Observations Regarding Use of Advanced CFD Analysis, Sensitivity Analysis, and Design Codes in MDO,” N.M. Alexandrov, and M.Y. Hussaini, eds., Multidisciplinary Design Optimization: State of the Art, SIAM Proceedings Series, SIAM, Philadelphia, pp. 263–279;
2.
also ICASE Report 96-16, NASA CR 198293 (available electronically at www.icase.edu).
1.
Newman
,
J. C.
, III
,
Taylor
,
A. C.
, III
,
Barnwell
,
R. W.
,
Newman
,
P. A.
, and
Hou
,
G. J.-W.
,
1999
, “
Overview of Sensitivity Analysis and Shape Optimization for Complex Aerodynamic Configurations
,”
J. Aircr.
,
36
, No.
1
, pp.
87
96
.
2.
Jameson, A., and Vassberg, J. C., 2001, “Computational Fluid Dynamics for Aerodynamic Design: Its Current and Future Impact,” AIAA-2001-0538, Jan.
3.
Thanedar
,
P. B.
, and
Kodiyalam
,
S.
,
1992
, “
Structural Optimization Using Probabilistic Constraints
,”
Struct. Optim.
,
4
, pp.
236
240
(also AIAA-91-0922-CP, 1991).
4.
Parkinson
,
A.
,
Sorensen
,
C.
, and
Pourhassan
,
N.
,
1993
, “
A General Approach for Robust Optimal Design
,”
ASME J. Mech. Des.
,
115
, No.
1
, pp.
74
80
.
5.
Chen, X., Hasselman, T. K., and Neill, D. J., 1997, “Reliability Based Structural Design Optimization for Practical Applications,” AIAA-97-1403, Apr.
6.
Du, X., and Chen, W., 1999, “Towards a Better Understanding of Modeling Feasibility Robustness in Engineering Design,” American Society of Mechanical Engineers, Paper DAC-8565, Sept.
7.
A Collection of Technical Papers, 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference and Exhibit, AIAA Forum on Non-Deterministic Approaches, St. Louis, MO, April 12–15, 1999.
8.
Chinchalkar
,
S.
, and
Taylor
,
D. L.
,
1994
, “
Geometric Uncertainties in Finite Element Analysis
,”
Computing Systems in Engineering
,
5
, No.
2
, pp.
159
170
.
9.
Du
,
X.
, and
Chen
,
W.
,
2000
, “
Methodology for Managing the Effect of Uncertainty in Simulation-Based Design
,”
AIAA J.
,
38
, No.
8
, pp.
1471
1478
.
10.
Turgeon, E., Pelletier. D., and Borggaard, J., 2001, “Sensitivity and Uncertainty Analysis for Variable Property Flows,” AIAA 2001-0139, Jan.
11.
Taylor, A. C., III, Green, L. L., Newman, P. A., and Putko, M. M., “Some Advanced Concepts in Discrete Aerodynamic Sensitivity Analysis,” AIAA-2001-2529.
12.
Sherman
,
L.
,
Taylor
,
A.
, III
,
Green
,
L.
,
Newman
,
P.
,
Hou
,
G.
, and
Korivi
,
M.
,
1996
, “
First-and Second-Order Aerodynamic Sensitivity Derivatives via Automatic Differentiation with Incremental Iterative Methods
,”
J. Comput. Phys.
,
129
, No.
2
, pp.
307
336
.
13.
Huyse
,
L.
, and
Lewis
,
R. M.
,
2001
, “Aerodynamic Shape Optimization of Two-dimensional Airfoils Under Uncertain Conditions,” ICASE Report No. 2001-1, NASA CR-2001-210648, Jan.
14.
Huyse, L., 2001, “Solving Problems of Optimization Under Uncertainty as Statistical Decision Problems.” AIAA 2001-1519, Apr.
15.
Oakley
,
D. R.
,
Sues
,
R. H.
, and
Rhodes
,
G. S.
,
1998
, “
Performance Optimization of Multidisciplinary Mechanical Systems Subject to Uncertainties
,”
Probabilistic Engineering Mechanics
,
13
, No.
1
, pp.
15
26
.
16.
Alvin
,
K. F.
,
Oberkampf
,
W. L.
,
Rutherford
,
B. M.
, and
Diegert
,
K. V.
,
2000
, “
Methodology for Chacterizing Modeling and Discretization Uncertainties in Computational Simulation,” Sandia Report SAND2000-5015, Mar.
17.
Oberkampf, W. L., DeLand, S. M., Rutherford, B. M., Diegert, K. V., and Alvin, K. F., 1999, “A New Methodology for the Estimation of Total Uncertainty in Computational Simulation,” AIAA-99-1612, Apr. (see Ref. 8, pp. 3061–3083).
18.
Green
,
L. L.
,
Newman
,
P. A.
, and
Haigler
,
K. J.
,
1996
, “
Sensitivity Derivatives for Advanced CFD Algorithm and Viscous Modeling Parameters via Automatic Differentiation
,”
J. Comput. Phys.
,
125
, No.
2
, pp.
313
324
(also AIAA 93-3321).
19.
Robinson
,
D. G.
,
1998
, “A Survey of Probabilistic Methods Used in Reliability, Risk and Uncertainty Analysis: Analytical Techniques I,” Sandia Report SAND98-1189, June.
20.
Bischof
,
C. H.
,
Carle
,
A.
,
Corliss
,
G. F.
,
Griewank
,
A.
, and
Hovland
,
P.
,
1992
, “
ADIFOR: Generating Derivative Codes from Fortran Programs
,”
Sci. Prog.
,
1
, No.
1
, pp.
1
29
.
21.
Bischof, C., Carle, A., Khademi, P., and Mauer, A., 1996, “Automatic Differentiation of FORTRAN,” IEEE Comput. Sci. Eng., Fall.
22.
Carle, A., and Fagan, M., 2000, “Overview of Adifor 3.0,” Department of Computational and Applied Mathematics, Rice University, CAAM-TR 00-02, Jan.
23.
Anon., 1995, Design Optimization Tools-DOT Users Manual: Version 4.20, Vanderplaats Research & Development, Inc., Colorado Springs, May.
24.
Dadone
,
A.
,
Valorani
,
M.
, and
Grossman
,
B.
,
2000
, “
Smoothed Sensitivity Equation Method for Fluid Dynamic Design Problems
,”
AIAA J.
,
38
, No.
3
, pp.
418
426
.
25.
Zhang, X., Pelletier, D., Trepanier, J., and Camarero, R., 2000, “Verification of Error Estimators for the Euler Equations,” AIAA-2000-1001, Jan.
26.
Marsaglia
,
G.
, and
Zaman
,
A.
,
1994
, “
Some Portable Very-Long-Period Random Number Generators
,”
Comput. Phys.
,
8
, No.
1
, pp.
117
121
.
27.
Van Leer
,
B.
, 1982, “Flux-Vector Splitting for Euler Equations,” ICASE Report 82-30, Sept. (Also Lecture Notes in Physics, 170, pp. 507–512, 1982).
28.
Thomas
,
J. L.
,
Van Leer
,
B.
, and
Walters
,
R. W.
,
1990
, “
Implicit Flux-Split Schemes for the Euler Equations
,”
AIAA J.
,
28
, pp.
973
974
.
You do not currently have access to this content.