Flow structure in boundary layers film cooled from a single row of round, simple angle holes, and subject to bulk flow pulsations, is investigated, including phase-averaged streamwise velocity variations, and alterations of time-averaged flow structure. The bulk flow pulsations are in the form of sinusoidal variations of velocity and static pressure, and are similar to flow variations produced by potential flow interactions and passing shock waves near turbine surfaces in gas turbine engines. Injection hole length to diameter ratio is 1.6, time-averaged blowing ratio is 0.50, and bulk flow pulsation frequencies range from 0–32 Hz, which gives modified Strouhal numbers from 0–1.02. Profiles of time-averaged flow characteristics and phase-averaged flow characteristics, measured in the spanwise/normal plane at x/d=5 and z/d=0, show that effects of pulsations are larger as imposed pulsation frequency goes up, with the most significant and dramatic changes at a frequency of 32 Hz. Phase shifts of static pressure (and streamwise velocity) waveforms at different boundary layer locations from the wall are especially important. As imposed pulsation frequency varies, this includes changes to the portion of each pulsation phase when the largest influences of static pressure waveform phase-shifting occur. At a frequency of 32 Hz, these phase shifts result in higher instantaneous injectant trajectories, and relatively higher injectant momentum levels throughout a majority of each pulsation period.

1.
Rigby, M. J., Johnson, A. B., and Oldfield, M. L. G., 1990, “Gas Turbine Rotor Blade Film Cooling With and Without Simulated NGV Shock Waves and Wakes,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 90-GT-78, Brussels.
2.
Abhari
,
R. S.
, and
Epstein
,
A. H.
,
1994
, “
An Experimental Study of Film Cooling in a Rotating Transonic Turbine
,”
ASME J. Turbomach.
,
116
, pp.
63
70
.
3.
Juhany
,
K. A.
, and
Hunt
,
M. L.
,
1994
, “
Flowfield Measurements in Supersonic Film Cooling Including Effect of Shock-Wave Interaction
,”
AIAA J.
,
32
, pp.
578
585
.
4.
Kanda
,
T.
,
Ono
,
F.
,
Takahashi
,
M.
,
Saito
,
T.
, and
Wakamatsu
,
Y.
,
1996
, “
Experimental Studies of Supersonic Film Cooling With Shock Wave Interaction
,”
AIAA J.
,
34
, pp.
265
271
.
5.
Abhari
,
R. S.
,
1996
, “
Impact of Rotor-Stator Interaction On Turbine Blade Film Cooling
,”
ASME J. Turbomach.
,
118
, pp.
103
113
.
6.
Garg, V. K., and Abhari, R. S., 1996, “Comparison Of Predicted And Experimental Nusselt Number For A Film-Cooled Rotating Blade,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 96-GT-223, Birmingham.
7.
Nix, A. C., Reid, T., Peabody, H., Ng, W. F., Diller, T. E., and Schetz, J. A., 1997, “Effects of Shock Wave Passing on Turbine Blade Heat Transfer in a Transonic Cascade,” AIAA Paper No. AIAA-97-0160.
8.
Popp, O., Smith, D. E., Bubb, J. V., Grabowski, H. C. III, Diller, T. E., Schetz, J. A., and Ng, W. F., 1999, “Steady and Unsteady Heat Transfer in a Transonic Film Cooled Turbine Cascade,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 99-GT-259, Indianapolis.
9.
Smith, D. E., Bubb, J. V., Popp, O., Grabowski, H. C. III, Diller, T. E., Schetz, J. A., and Ng, W. F., 2000, “Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part I: Steady Heat Transfer,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 2000-GT-202, Munich.
10.
Popp, O., Smith, D. E., Bubb, J. V., Grabowski, H. C. III, Diller, T. E., Schetz, J. A., and Ng, W. F., 2000, “Investigation of Heat Transfer in a Film Cooled Transonic Turbine Cascade, Part II: Unsteady Heat Transfer,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 2000-GT-203, Munich.
11.
Dunn, M. G., Haldeman, C. W., Abhari, R. S., and McMillan, M. L., 2000, “Influence of Vane/Blade Spacing on the Heat Flux for a Transonic Turbine,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 2000-GT-206, Munich.
12.
Bergholz, R. F., Dunn, M. G., and Steuber, G. D., 2000, “Rotor/Stator Heat Transfer Measurements and CFD Predictions for Short-Duration Turbine Rig Tests,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 2000-GT-208, Munich.
13.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
,
1996
, “
Bulk Flow Pulsations and Film Cooling: Part 1, Injectant Behavior
,”
Int. J. Heat Mass Transf.
,
39
, pp.
2271
2282
.
14.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
,
1996
, “
Bulk Flow Pulsations and Film Cooling: Part 2, Flow Structure and Film Effectiveness
,”
Int. J. Heat Mass Transf.
,
39
, pp.
2283
2292
.
15.
Ligrani
,
P. M.
,
Gong
,
R.
,
Cuthrell
,
J. M.
, and
Lee
,
J. S.
,
1997
, “
Effects of Bulk Flow Pulsations on Film-Cooled Boundary Layer Structure
,”
ASME J. Fluids Eng.
,
119
, pp.
56
66
.
16.
Seo
,
H. J.
,
Lee
,
J. S.
, and
Ligrani
,
P. M.
,
1998
, “
The Effect of Injection Hole Length on Film Cooling With Bulk Flow Pulsations
,”
Int. J. Heat Mass Transf.
,
41
, No.
22
, pp.
3515
3528
.
17.
Sohn, D. K., and Lee, J. S., 1997, “The Effects of Bulk Flow Pulsations on Film Cooling From Two Rows of Holes,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 97-GT-129.
18.
Jung, I.-S., and Lee, J. S., 1998, “Effects Of Bulk Flow Pulsations on Film Cooling From Spanwise Oriented Holes,” International Gas Turbine & Aeroengine Congress & Exposition, Paper No. 98-GT-211, Stockholm.
19.
Bell
,
C. M.
,
Ligrani
,
P. M.
,
Hull
,
W. A.
, and
Norton
,
C. M.
,
1999
, “
Film Cooling Subject to Bulk Flow Pulsations: Effects of Blowing Ratio, Freestream Velocity, and Pulsation Frequency
,”
Int. J. Heat Mass Transf.
,
42
, pp.
4333
4344
.
20.
Ligrani
,
P. M.
, and
Bell
,
C. M.
,
2001
, “
Film Cooling Subject to Bulk Flow Pulsations: Effects of Density Ratio, Hole Length-to-Diameter Ratio, and Pulsation Frequency
,”
Int. J. Heat Mass Transf.
,
44
, No.
10
, pp.
2005
2009
.
21.
Kline
,
S. J.
, and
McClintock
,
F. A.
,
1953
, “
Describing Uncertainties in Single Sample Experiments
,”
Mech. Eng. (Am. Soc. Mech. Eng.)
,
75
, pp.
3
8
.
22.
Moffat
,
R. J.
,
1988
, “
Describing the Uncertainties in Experimental Results
,”
Exp. Therm. Fluid Sci.
,
1
, No.
1
, pp.
3
17
.
23.
Al-Asmi
,
K.
, and
Castro
,
I. P.
,
1993
, “
Production of Oscillatory Flow in Wind Tunnels
,”
Exp. Fluids
,
15
, pp.
33
41
.
24.
Menendez
,
A. N.
, and
Ramaprian
,
B. R.
,
1989
, “
Experimental Study of a Periodic Turbulent Boundary Layer in Zero Mean Pressure Gradient
,”
Aeronaut. J.
,
93
, pp.
195
206
.
You do not currently have access to this content.