A panel-Fourier method for ship-wave flow problems is considered here. It is based on a three-dimensional potential flow model with a linearized free surface condition, and it is implemented by means of a low order panel method coupled to a Fourier-series. The wave-resistance is computed by pressure integration over the static wet hull and the wave-pattern is obtained by a post-processing procedure. The strategy avoids the use of numerical viscosity, in contrast with the Dawson-like methods, widely used in naval-panel codes, therefore a second centered scheme can be used for the discrete operator on the free surface. Numerical results including the wave-pattern for a ferry along fifteen ship-lengths are presented. [S0098-2202(00)01402-4]
Issue Section:
Technical Papers
1.
Morino
, L.
, and Kuo
, C. C.
, 1974
“Subsonic Potential Aerodynamics for Complex Configurations: A General Theory
,” AIAA J.
12
, pp. 191
–197
.2.
Katz, J., and Plotkin A., 1991, Low-Speed Aerodynamics, From Wing Theory to Panel Methods, Mcgraw-Hill.
3.
Mokry, M., 1990, “Complex Variable Boundary Element Method for External Potential Flows,” 28th Aerospace Sciences Meeting, January 8–11, Reno, Nevada.
4.
Storti
, M.
, D’Elı´a
, J.
, and Idelsohn
, S.
, 1995
, “CVBEM formulation for multiple profiles and cascades
,” Appl. Mech. Rev.
, 48
, No. 11
, Part 2. pp. 203
–210
.5.
Morino, L., ed., 1985, Computational Methods in Potential Aerodynamics, Springer-Verlag.
6.
Kinnas
, S. A.
, and Hsin
, C. Y.
, 1992
, “Boundary Element Method for the Analysis of the Unsteady Flow Around Extreme Propeller Geometries
,” AIAA J.
, 30
, pp. 688
–696
.7.
Dawson, C. W., 1977, “A Practical Computer Method for Solving Ship-Wave Problems” 2nd Int. Conf. on Numerical Ships Hydrodynamics, Berkeley, CA, pp 30–38.
8.
Farmer
, J.
, Martinelli
, L.
, and Jameson
, A.
, 1994
, “Fast Multigrid Method for Solving Incompressible Hydrodynamic Problems with Free Surfaces
,” AIAA J.
, 32
, No. 6
, June, pp. 1175
–1182
.9.
Stoker, J. J., 1957, Water Waves, Interscience, New York.
10.
van Dyke, M., 1975, Perturbation Methods on Fluid Mechanics, Parabolic Press, Stanford.
11.
Newman
, J. N.
, 1978
, “The Theory of Ship Motions
,” Appl. Mech.
18
, pp. 221
–283
.12.
Baumann
, C.
, Storti
, M.
, and Idelsohn
, S.
, 1992
, “A Petrov-Galerkin technique for the solution of transonic and supersonic flows
,” Comput. Methods Appl. Mech. Eng.
, 95
, pp. 49
–70
.13.
Nigro
, N.
, Storti
, M.
, and Idelsohn
, S.
, 1995
, “Fluid flows around turbomachinery using an explicit pseudotemporal Euler FEM code
,” J. Commun. Numer. Methods Eng.
, 11
, pp. 199
–211
.14.
Givoli
, D.
, 1991
, “Non-reflecting Boundary Conditions
,” J. Comput. Phys.
, 94
, pp. 1
–29
.15.
Bonet
, R.
, Nigro
, N.
, Storti
, M.
, and Idelsohn
, S.
, 1998
, “A Discrete Non-Local (DNL) Outgoing Boundary Condition for Diffraction of Surface Waves
,” Commun. Numer. Methods Eng.
, 14
, pp. 849
–861
.16.
Storti
, M.
, D’Elı´a
, X.
, and Idelsohn
, S.
, 1998
, “Algebraic Discrete Non-Local (DNL) Absorbing Boundary Condition for the Ship Wave Resistance Problem
,” J. Comput. Phys.
, 146
, No. 2
, pp. 570
–602
.17.
Storti
, M.
, D’Elı´a
, J.
, and Idelsohn
, S.
, 1998
, “Computing Ship Wave Resistance from Wave Amplitude with the DNL Absorbing Boundary Condition
,” Commun. Numer. Methods Eng.
, 14
, pp. 997
–1012
.18.
Storti
, M.
, D’Elı´a
, J.
, Bonet
, R.
, Nigro
, N.
, and Idelsohn
, S.
, 2000
“The DNL Absorbing Boundary Condition. Applications to Wave Problems
,” Comput. Meth. Appl. Mech. Eng.
182
, (3-4
), pp. 483
–498
.19.
Broeze
, J.
, and Romate
, J. E.
, 1992
, “Absorbing Boundary Conditions for Free Surface Wave Simulations with a Panel Method
,” J. Comput. Phys.
, 99
, pp. 146
–158
.20.
Medina
, D. E.
, and Liggett
, J. A.
, 1988
, “Three-Dimensional Boundary Element Computation of Potential Flow in Fractured Rock
,” Int. J. Numer. Methods Eng.
, 26
, pp. 2319
–2330
.21.
D’Elı´a J., 1997, “Numerical Methods for the Ship Wave-Resistance Problem,” Ph.D. thesis, Univ. Nacional del Litoral, Santa Fe, Argentina.
22.
D’Elı´a
, J.
, Storti
, M.
, and Idelsohn
, S.
, 2000
“Iterative solution of panel discretizations for potential flows. The modal/multipolar preconditioning
,” Int. J. Numer. Methods Fluids
, 32
, No. 1
, pp. 1
–27
.23.
D’Elı´a
, J.
, Storti
, M.
, and Idelsohn
, S.
, 2000
“Smoothed Surface Gradients for Panel Methods
,” Adv. Eng. Soft.
31
, No. 5
, pp. 327
–334
.24.
D’Elı´a
, J.
, Storti
, M.
, and Idelsohn
, S.
, 2000
, “A Closed Form for Low Order Panel Methods
,” Adv. Eng. Software
31
, No. 5
, 335
–341
.25.
Letcher
, J. S.
, 1993
, “Properties of finite-difference operators for the steady-wave problem
,” J. Ship Res.
, 37
, No. 1
, Mar., pp. 1
–7
.26.
Wehausen
, J. V.
, 1973
, “The Wave Resistance of Ships
,” Adv. Appl. Mech.
, 13
, pp. 93
–245
.Copyright © 2000
by ASME
You do not currently have access to this content.