Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

In this article, the detailed mechanism of isopentanol was simplified by direct relationship graph error propagation (DRGEP), generation rate analysis, reaction path optimization, and sensitivity analysis, and a comprehensive simplified mechanism of isopentanol/gasoline alternative fuels was obtained. Isopentanol/gasoline-characterized fuels with different blending ratios were investigated, and the results showed that blending of isopentanol promoted the autoignition of gasoline. It was found that blending isopentanol does not significantly affect the low-temperature reaction path of alkanes, but increases the reaction path flux from toluene to benzene. During combustion of isopentanol/gasoline alternative fuels, the isopentanol component exhibits a unique two-stage combustion phenomenon.

References

1.
Farooq
,
M. S.
,
Baig
,
A.
,
Wei
,
Y.
, and
Liu
,
H.
,
2024
, “
Comprehensive Review on Technical Developments of Methanol-Fuel-Based Spark Ignition Engines to Improve the Performance, Combustion, and Emissions
,”
ASME J. Energy Resour. Technol.
,
146
(
7
), p.
070801
.
2.
Feng
,
H.
,
Xiao
,
S.
,
Nan
,
Z.
,
Wang
,
D.
, and
Yang
,
C.
,
2021
, “
Thermodynamic Analysis of Using Ethanol-Methanol-Gasoline Blends in a Turbocharged, Spark-Ignition Engine
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
120903
.
3.
Ramachander
,
J.
, and
Gugulothu
,
S. K.
,
2022
, “
Performance, Combustion, and Emission Characteristics of a Common Rail Direct Injection Diesel Engine Fueled by Diesel/n-Amyl Alcohol Blends With Exhaust Gas Recirculation Technique
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
4.
Gautam
,
M.
, and
Martin
,
D. W.
,
2000
, “
Combustion Characteristics of Higher-Alcohol/Gasoline Blends
,”
Proc. Inst. Mech. Eng., Part A
,
214
(
5
), pp.
497
511
.
5.
Zhang
,
Q.
,
Han
,
Y.
,
Zhang
,
K.
, and
Tian
,
J.
,
2022
, “
Spray Autoignition Study of Bio-Oxygenated Additives Blended With Aviation Kerosene Under Engine-Like Cold-Start Conditions
,”
ASME J. Energy Resour. Technol.
,
144
(
3
), p.
032307
.
6.
Peralta-Yahya
,
P. P.
, and
Keasling
,
J. D.
,
2010
, “
Advanced Biofuels Production in Microbes
,”
Biotechnol. J.
,
5
(
2
), pp.
147
162
.
7.
Sarathy
,
S. M.
,
Farooq
,
A.
, and
Kalghatgi
,
G. T.
,
2018
, “
Recent Progress in Gasoline Surrogate Fuels
,”
Prog. Energy Combust. Sci.
,
65
, pp.
67
108
.
8.
Curran
,
H. J.
,
Pitz
,
W. J.
,
Westbrook
,
C. K.
,
Callahan
,
G. V.
, and
Dryer
,
F. L.
,
1998
, “
Oxidation of Automotive Primary Reference Fuels at Elevated Pressures
,”
Symp. (Int.) Combust.
,
27
(
1
), pp.
379
387
.
9.
Andrae
,
J. C. G.
,
Björnbom
,
P.
,
Cracknell
,
R. F.
, and
Kalghatgi
,
G. T.
,
2007
, “
Autoignition of Toluene Reference Fuels at High Pressures Modeled With Detailed Chemical Kinetics
,”
Combust. Flame
,
149
(
1–2
), pp.
2
24
.
10.
Andrae
,
J. C. G.
,
2013
, “
Comprehensive Chemical Kinetic Modeling of Toluene Reference Fuels Oxidation
,”
Fuel
,
107
, pp.
740
748
.
11.
Cho
,
S.
,
Lopez-Pintor
,
D.
, and
Sofianopoulos
,
A.
,
2023
, “
A Skeletal Mechanism for Gasoline Surrogates: Development, Validation, and CFD Application
,”
Fuel
,
332
(
2
), p.
126236
.
12.
Zheng
,
Z. L.
, and
Liang
,
Z. L.
,
2015
, “
Reduced Chemical Kinetic Model of a Gasoline Surrogate Fuel for HCCI Combustion
,”
Acta Phys.-Chim. Sin.
,
31
(
7
), pp.
1265
1274
.
13.
Wang
,
Y. F.
,
Yao
,
M. F.
, and
Zheng
,
Z. Q.
,
2013
, “
A Semidetailed Chemical Kinetic Model of a Gasoline Surrogate Fuel
,”
Fuel
,
113
, pp.
347
356
.
14.
Zhu
,
Z. J.
,
Zheng
,
Z. L.
, and
Kong
,
J.
,
2021
, “
Construction of Reduced Mechanism and Prediction of the RON of Toluene Primary Reference Fuel/Ethanol/Diisobutylene
,”
Renewable Energy
,
172
, pp.
862
881
.
15.
Yang
,
Y.
,
Dec
,
J.
,
Dronniou
,
N.
, and
Simmons
,
B.
,
2010-01-2164.
, “
Characteristics of Isopentanol as a Fuel for HCCI Engines
,”
SAE Int. J. Fuels Lubr.
,
3
(
2
), pp.
725
741
.
16.
Dayma
,
G.
,
Togbé
,
C.
, and
Dagaut
,
P.
,
2011
, “
Experimental and Detailed Kinetic Modeling Study of Isoamyl Alcohol (Isopentanol) Oxidation in a Jet-Stirred Reactor at Elevated Pressure
,”
Energy Fuels
,
25
(
11
), pp.
4986
4998
.
17.
Li
,
Q. Q.
,
Tang
,
C. L.
,
Cheng
,
Y.
, and
Li
,
G.
,
2015
, “
Laminar Flame Speeds and Kinetic Modeling of n-Pentanol and Its Isomers
,”
Energy Fuels
,
29
(
8
), pp.
5334
5348
.
18.
Park
,
S.
,
Chung
,
S. H.
,
Lu
,
T. F.
, and
Sarathy
,
S. M.
,
2015
, “
Combustion Characteristics of C5 Alcohols and a Skeletal Mechanism for Homogeneous Charge Compression Ignition Combustion Simulation
,”
Energy Fuels
,
29
(
11
), pp.
7584
7594
.
19.
Singh
,
A. P.
,
Sonawane
,
U.
, and
Agarwal
,
A. K.
,
2022
, “
Methanol/Ethanol/Butanol-Gasoline Blends Use in Transportation Engine—Part 1: Combustion, Emissions, and Performance Study
,”
ASME J. Energy Resour. Technol.
,
144
(
10
), p.
102304
.
20.
Uslu
,
S.
, and
Celik
,
M. B.
,
2020
, “
Combustion and Emission Characteristics of Isoamyl Alcohol-Gasoline Blends in Spark Ignition Engine
,”
Fuel
,
262
(
15
), p.
116496
.
21.
Chembedu
,
G.
, and
Manu
,
P. V.
,
2024
, “
Investigation of Diesel-Watermelon Seed Biodiesel-Isoamyl Alcohol Blends in CI Engine Using Response Surface Methodology Optimisation
,”
Ind. Crops Prod.
,
218
, p.
118849
.
22.
Pitscha
,
P. D.
, and
Pitsch
,
H.
,
2008
, “
An Efficient Error-Propagation-Based Reduction Method for Large Chemical Kinetic Mechanisms
,”
Combust. Flame
,
154
(
1–2
), pp.
67
81
.
23.
Warnatz
,
J.
,
Maas
,
U.
, and
Dibble R
,
W.
,
1999
,
Combustion
,
Springer
,
New York
, pp.
91
97
.
24.
Tsujimura
,
T.
,
Pitz
,
W. J.
,
Gillespie
,
F.
,
Curran
,
H. J.
,
Weber
,
B. W.
,
Zhang
,
Y.
, and
Sung
,
C. J.
,
2012
, “
Development of Isopentanol Reaction Mechanism Reproducing Autoignition Character at High and Low Temperatures
,”
Energy Fuels
,
26
(
8
), pp.
4871
4886
.
25.
Sarathy
,
S. M.
,
Park
,
S.
,
Weber
,
B. W.
,
Wang
,
W. J.
,
Veloo
,
P. S.
,
Davis
,
A. C.
,
Togbe
,
C.
, et al
,
2013
, “
A Comprehensive Experimental and Modeling Study of Iso-Pentanol Combustion
,”
Combust. Flame
,
160
(
12
), pp.
2712
2728
.
26.
Nativel
,
D.
,
Pelucchi
,
M.
,
Frassoldati
,
A.
,
Comandini
,
A.
,
Cuoci
,
A.
,
Ranzi
,
E.
,
Chaumeix
,
N.
, and
Faravelli
,
T.
,
2017
, “
Laminar Flame Speeds of Pentanol Isomers: An Experimental and Modeling Study
,”
Combust. Flame
,
166
, pp.
1
18
.
27.
Li
,
S. F.
,
Zhang
,
C. H.
,
Jing
,
Z.
,
Li
,
Y. Y.
,
Yin
,
P.
,
Cai
,
P. P.
, and
Lu
,
A.
,
2021
, “
Development of a Reduced Chemical Reaction Mechanism for n-Pentanol Based on Combined Reduction Methods and Genetic Algorithm
,”
ACS Omega
,
6
(
9
), pp.
6448
6459
.
28.
Li
,
Y.
,
Alfazazi
,
A.
,
Mohan
,
B.
,
Tingas
,
E. A.
,
Badra
,
J.
,
Im
,
H. G.
, and
Sarathy
,
S. M.
,
2019
, “
Development of a Reduced Four-Component (Toluene/n-Heptane/Iso-Octane/Ethanol) Gasoline Surrogate Model
,”
Fuel
,
247
(
1
), pp.
164
178
.
29.
Zhong
,
B. J.
, and
Zheng
,
D.
,
2014
, “
A Chemical Mechanism for Ignition and Oxidation of Multi-Component Gasoline Surrogate Fuels
,”
Fuel
,
128
, pp.
458
466
.
30.
Wang
,
H.
,
Yao
,
M. F.
,
Yue
,
Z. Y.
,
Jia
,
M.
, and
Reitz
,
R.
,
2015
, “
A Reduced Toluene Reference Fuel Chemical Kinetic Mechanism for Combustion and Polycyclic-Aromatic Hydrocarbon Predictions
,”
Combust. Flame
,
162
(
6
), pp.
2390
2404
.
31.
Fikri
,
M.
,
Herzler
,
J.
,
Starke
,
R.
,
Schulz
,
C.
,
Roth
,
P.
, and
Kalghatgi
,
G. T.
,
2008
, “
Autoignition of Gasoline Surrogates Mixtures at Intermediate Temperatures and High Pressures
,”
Combust. Flame
,
152
(
1–2
), pp.
276
281
.
32.
Comandini
,
A.
,
Nativel
,
D.
, and
Chaumeix
,
N.
,
2021
, “
Laminar Flame Speeds and Ignition Delay Times of Gasoline/Air and Gasoline/Alcohol/Air Mixtures: The Effects of Heavy Alcohol Compared to Light Alcohol
,”
Energy Fuels
,
35
(
18
), pp.
14913
14923
.
33.
Javed
,
T.
,
Lee
,
C.
,
AlAbbad
,
M.
,
Djebbi
,
K.
,
Beshir
,
M.
,
Badra
,
J.
,
Curran
,
H.
, and
Farooq
,
A.
,
2016
, “
Ignition Studies of n-Heptane/Iso-Octane/Toluene Blends
,”
Combust. Flame
,
171
(
9
), pp.
223
233
.
34.
Cai
,
L. M.
, and
Pitsch
,
H.
,
2015
, “
Optimized Chemical Mechanism for Combustion of Gasoline Surrogate Fuels
,”
Combust. Flame
,
162
(
5
), pp.
1623
1637
.
35.
Andrae
,
J. C. G.
, and
Kovács
,
T.
,
2016
, “
Evaluation of Adding an Olefin to Mixtures of Primary Reference Fuels and Toluene to Model the Oxidation of a Fully Blended Gasoline
,”
Energy Fuels
,
30
(
9
), pp.
7721
7730
.
36.
Baulouli
,
K.
,
Saeay
,
R. K.
, and
Atikol
,
U.
,
2012
, “
Development of a Reduced Mechanism for n-Heptane Fuel in HCCI Combustion Engines by Applying Combined Reduction Methods
,”
Energy Fuels
,
26
(
6
), pp.
3244
3256
.
37.
Uslu
,
S.
, and
Celik
,
M. B.
,
2020
, “
Performance and Exhaust Emission Prediction of a SI Engine Fueled With I-Amyl Alcohol-Gasoline Blends: An ANN Coupled RSM Based Optimization
,”
Fuel
,
265
, p.
226922
.
You do not currently have access to this content.