Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Emission values have been limited and some levels must be compatible with human health and the environment. One of the most effective ways to achieve these levels is effective piston bowl geometry. The aim of designing the new combustion chamber (NCC) was to provide a multiaxial distribution of the fuel in the bowl. In the study, the new combustion chamber was compared with the standard combustion chamber (SCC). Both chambers were fitted to the engine and the performance analysis was tested at different operation conditions. Then, 100-h tests were carried out to evaluate the effect of the piston bowl geometry on the surface of the cylinder liner by analyzing its microstructure. From the obtained results, the new combustion chamber geometry reduced HC, CO, and soot emissions while NO emissions slightly increased compared to the standard combustion chamber. It decreased brake-specific fuel consumption values by 4%, 5.53%, 7.02%, 6.4%, 5.55%, and 5.18% for 1700, 1800, 1900, 2000, 2100, and 2200 rpm, respectively. Torque values increased at all engine speeds. When the cylinder liners were evaluated as a result of long-term endurance, there were clearly fewer abrasive wear lines on the cylinder liners of NCC compared to SCC.

References

1.
Gok
,
M. G.
, and
Karabas
,
M.
,
2022
, “
Production of Re Doped La2Zr2O7 Based TBCs and Numerical Analysis of Their Use on IC Engine Piston Surface
,”
Ceram. Int.
,
48
(
8
), pp.
11173
11180
.
2.
Cihan
,
Ö
,
Temizer
,
I.
,
Gok
,
M. G.
, and
Karabas
,
M.
,
2020
, “
Investigation of the Effect of Rare Earth Doped La2Zr2O7 Based Thermal Barrier Coating on Performance and Combustion Characteristics of DI Diesel Engine
,”
Surf. Coat. Technol.
,
403
, pp.
1
13
.
3.
Demirci
,
A.
, and
Kutlar
,
O. A.
,
2017
, “
The Effects of Different Combustion Chamber Geometries on the Performance and Emissions of an Internal Combustion Engine
,”
Doctoral thesis
,
Istanbul Technical University
,
Turkey
. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=SsilO2tKNGALeh1Ernh18A&no=jojv1oezPFuB4dC1Wj0-cw.
4.
Gok
,
M. G.
, and
Cihan
,
O.
,
2022
, “
Numerical Analysis of The Application of Different Lattice Designs and Materials for Reciprocating Engine Connecting Rods
,”
Scientia Iranica
,
29
(
5
), pp.
2362
2373
.
5.
Temizer
,
I.
,
Cihan
,
Ö
, and
Öncüoğlu
,
Ö
,
2023
, “
Numerical Investigation of Different Combustion Chamber on Flow, Combustion Characteristics and Exhaust Emissions
,”
Eur. Mech. Sci.
,
7
(
1
), pp.
7
15
.
6.
Gok
,
M.G.
, and
Cihan
,
O.
,
2021
, “
Investigation of Failure Mechanism of a DCI Engine Connecting Rod
,”
Eur. J. Tech.
,
11
(
2
), pp.
222
228
.
7.
Jaichandar
,
S.
,
Senthil Kumar
,
P.
, and
Annamalai
,
K.
,
2012
, “
Combined Effect of Injection Timing and Combustion Chamber Geometry on the Performance of a Biodiesel Fueled Diesel Engine
,”
Energy
,
47
(
1
), pp.
388
394
.
8.
Dolak
,
J.
, and
Reitz
,
R. D.
,
2011
, “
Optimization of the Piston Geometry of a Diesel Engine Using a Two-Spray-Angle Nozzle
,”
Proc. Inst. Mech. Eng. Part D J. Automob. Eng.
,
225
(
3
), pp.
406
421
.
9.
Jaichandar
,
S.
, and
Annamalai
,
K.
,
2012
, “
Effects of Open Combustion Chamber Geometries on the Performance of Pongamia Biodiesel in a DI Diesel Engine
,”
Fuel
,
98
, pp.
272
279
.
10.
Park
,
S.
,
2012
, “
Optimization of Combustion Chamber Geometry and Engine Operating Conditions for Compression Ignition Engines Fueled With Dimethyl Ether
,”
Fuel
,
97
, pp.
61
71
.
11.
Doğan
,
H. E.
, and
Kutlar
,
O. A.
,
2019
, “
Investigation of Different Combustion Chamber Geometries With Natural Gas and Gasoline Fuel
,”
Doctoral thesis
,
Istanbul Technical University
,
Turkey
. https://tez.yok.gov.tr/UlusalTezMerkezi/tezDetay.jsp?id=jwS7i9N1py9ohKeC8iYpdQ&no=jTgx5rlCGYEkuovcc5NsVQ.
12.
Demirci
,
A.
,
Doǧan
,
H. E.
,
Kutlar
,
O. A.
,
Cihan
,
Ö
, and
Arslan
,
H.
,
2023
, “
Investigation of Burn Parameters and Cyclic Variations of a Spark Ignition Engine With Different Combustion Chambers
,”
ASME J. Energy Resour. Technol.
,
145
(
5
), p. 052301.
13.
Akın Kutlar
,
O.
,
Emre Doğan
,
H.
,
Demirci
,
A.
, and
Arslan
,
H.
,
2023
, “
An Investigation of the Impact of Combustion Chamber Geometry on Turbulent Burning Speeds in a Thermodynamic Model
,”
ASME J. Energy Resour. Technol.
,
145
(
6
), p.
062304
.
14.
Akroot
,
A.
, and
Namlı
,
L.
,
2021
, “
Performance Assessment of an Electrolyte-Supported and Anode-Supported Planar Solid Oxide Fuel Cells Hybrid System
,”
J. Therm. Eng.
,
7
(
14
), pp.
1921
1935
.
15.
Temizer
,
I.
, and
Cihan
,
Ö
,
2021
, “
Analysis of Different Combustion Chamber Geometries Using Hydrogen/Diesel Fuel in a Diesel Engine
,”
Energy Sources, Part A
,
43
(
1
), pp.
17
34
.
16.
Karthickeyan
,
V.
,
2019
, “
Effect of Combustion Chamber Bowl Geometry Modification on Engine Performance, Combustion and Emission Characteristics of Biodiesel Fuelled Diesel Engine With Its Energy and Exergy Analysis
,”
Energy
,
176
, pp.
830
852
.
17.
Li
,
J.
,
Yang
,
W. M.
,
An
,
H.
,
Maghbouli
,
A.
, and
Chou
,
S. K.
,
2014
, “
Effects of Piston Bowl Geometry on Combustion and Emission Characteristics of Biodiesel Fueled Diesel Engines
,”
Fuel
,
120
, pp.
66
73
.
18.
Kattela
,
S. P.
,
Vysyaraju
,
R. K. R.
,
Surapaneni
,
S. R.
, and
Ganji
,
P. R.
,
2019
, “
Effect of n-Butanol/Diesel Blends and Piston Bowl Geometry on Combustion and Emission Characteristics of CI Engine
,”
Environ. Sci. Pollut. Res.
,
26
(
2
), pp.
1661
1674
.
19.
Ravichandran
,
A.
,
Rajan
,
K.
,
Rajaram Narayanan
,
M.
, and
Senthil Kumar
,
K. R.
,
2016
, “
Effect of Piston Bowl Geometry on the Performance of a Diesel Engine Using Corn Biodiesel and Its Diesel Blends
,”
Int. J. ChemTech Res.
,
9
(
1
), pp.
105
112
.
20.
Abdul Gafoor
,
C. P.
, and
Gupta
,
R.
,
2015
, “
Numerical Investigation of Piston Bowl Geometry and Swirl Ratio on Emission From Diesel Engines
,”
Energy Convers. Manag.
,
101
, pp.
541
551
.
21.
Shi
,
Y.
, and
Reitz
,
R. D.
,
2008
, “
Optimization Study of the Effects of Bowl Geometry, Spray Targeting, and Swirl Ratio for a Heavy-Duty Diesel Engine Operated at Low and High Load
,”
Int. J. Engine Res.
,
9
(
4
), pp.
325
346
.
22.
Prasad
,
B. V. V. S. U.
,
Sharma
,
C. S.
,
Anand
,
T. N. C.
, and
Ravikrishna
,
R. V.
,
2011
, “
High Swirl-Inducing Piston Bowls in Small Diesel Engines for Emission Reduction
,”
Appl. Energy
,
88
(
7
), pp.
2355
2367
.
23.
Khan
,
S.
,
Panua
,
R.
, and
Bose
,
P. K.
,
2018
, “
Combined Effects of Piston Bowl Geometry and Spray Pattern on Mixing, Combustion and Emissions of a Diesel Engine: A Numerical Approach
,”
Fuel
,
225
, pp.
203
217
.
24.
Venkateswaran
,
S. P.
, and
Nagarajan
,
G.
,
2010
, “
Effects of the Re-Entrant Bowl Geometry on a DI Turbocharged Diesel Engine Performance and Emissions—A CFD Approach
,”
ASME J. Eng. Gas Turbines Power
,
132
(
12
), p. 122803.
25.
Bawankar
,
C. S
, and
Gupta
,
R.
,
2016
, “
Effects of Piston Bowl Geometry on Combustion and Emission Characteristics on Diesel Engine: A CFD Case Study
,”
Int. J. R. Eng. Technol.
,
5
(
7
), pp.
81
93
.
26.
Channappagoudra
,
M.
,
Ramesh
,
K.
, and
Manavendra
,
G.
,
2018
, “
Comparative Investigation of the Effect of Hemispherical and Toroidal Piston Bowl Geometries on Diesel Engine Combustion Characteristics
,”
Biofuel Res. J.
,
5
(
3
), pp.
854
862
.
27.
Fridriksson
,
H. S.
,
Tuner
,
M.
,
Andersson
,
O.
,
Sunden
,
B.
,
Persson
,
H.
, and
Ljungqvist
,
M.
,
2014
, “
Effect of Piston Bowl Shape and Swirl Ratio on Engine Heat Transfer in a Light-Duty Diesel Engine
,”
SAE Tech. Paper
,
2014-01–1141
, pp.
1
13
.
28.
Lee
,
J.
,
Lee
,
S.
,
Kim
,
J.
, and
Kim
,
D.
,
2015
, “
Bowl Shape Design Optimization for Engine-Out PM Reduction in Heavy Duty Diesel Engine
,”
SAE Tech. Paper
,
2015-01–0789
, pp.
1
11
.
29.
Pham
,
V. C.
,
Kim
,
J. K.
,
Lee
,
W. J.
,
Choe
,
S. J.
,
Le
,
V. V.
, and
Choi
,
J. H.
,
2022
, “
Effects of Piston Bowl Geometry on Combustion and Emissions of a Four-Stroke Heavy-Duty Diesel Marine Engine
,”
Appl. Sci.
,
12
(
24
), pp.
1
23
.
30.
Jyothi
,
U. S.
,
Vijaya
,
K.
, and
Reddy
,
K.
,
2018
, “
Effect of Combustion Chamber Geometry on Performance and Combustion Characteristics of Hydrogen Enriched Diesel Engine
,”
Int. J. Appl. Eng. Res.
,
13
(
10
), pp.
7998
8004
.
31.
Li
,
X. R.
,
Zhou
,
H.
,
Su
,
L.
,
Chen
,
Y.
,
Qiao
,
Z.
, and
Liu
,
F. S.
,
2016
, “
Combustion and Emission Characteristics of a Lateral Swirl Combustion System for DI Diesel Engines Under Low Excess Air Ratio Conditions
,”
Fuel
,
184
, pp.
672
680
.
32.
Li
,
X.
,
Sun
,
Z.
,
Du
,
W.
, and
Wei
,
R.
,
2010
, “
Research and Development of Double Swirl Combustion System for a DI Diesel Engine
,”
Combust. Sci. Technol.
,
182
(
8
), pp.
1029
1049
.
33.
Li
,
X.
,
Qiao
,
Z.
,
Su
,
L.
,
Li
,
X.
, and
Liu
,
F.
,
2017
, “
The Combustion and Emission Characteristics of a Multi-swirl Combustion System in a DI Diesel Engine
,”
Appl. Therm. Eng.
,
115
, pp.
1203
1212
.
34.
Kumar
,
V.
,
2018
, “
Experimental Investigation of Piston Bowl Geometry Effects on Performance and Emissions Characteristics of Diesel Engine at Variable Injection Pressure and Timings
,”
Int. J. Ambient Energy
,
39
(
7
), pp.
685
693
.
35.
Sener
,
R.
,
Yangaz
,
M. U.
, and
Gul
,
M. Z.
,
2020
, “
Effects of Injection Strategy and Combustion Chamber Modification on a Single-Cylinder Diesel Engine
,”
Fuel
,
266
(
Sept.
), p.
117122
.
36.
Boyarski
,
N. J.
, and
Reitz
,
R. D.
,
2006
, “
Premixed Compression Ignition (PCI) Combustion With Modeling-Generated Piston Bowl Geometry in a Diesel Engine
,”
SAE Tech. Paper
,
2006-01–0198
, pp.
1
11
.
37.
Temizer
,
I.
,
Oncüoğlu
,
O.
, and
Cihan
,
O.
,
2023
, “
Analysis of an Innovative Combustion Chamber With the Wall Guided Fuel Injection in a Small Diesel Engine
,”
Int. J. Engine Res.
,
24
(
9
), pp.
3954
3969
.
38.
Wei
,
S.
,
Wang
,
F.
,
Leng
,
X.
,
Liu
,
X.
, and
Ji
,
K.
,
2013
, “
Numerical Analysis on the Effect of Swirl Ratios on Swirl Chamber Combustion System of DI Diesel Engines
,”
Energy Convers. Manag.
,
75
(
x
), pp.
184
190
.
39.
Mehdiyev
,
R.
,
Ogun
,
K.
,
Ozcan
,
E.
,
Arslan
,
H.
,
Babaoglu
,
O.
, and
Teker
,
H.
,
2011
, “
The Twin Swirl ‘mR-Process' Combustion Mechanism and Conversion of Diesel Engines to Operate With Gaseous Fuels
,”
SAE Tech. Pap.
,
2011-24–0066
, pp.
1
11
.
40.
Li
,
X.
,
Chen
,
Y.
,
Su
,
L.
, and
Liu
,
F.
,
2018
, “
Effects of Lateral Swirl Combustion Chamber Geometries on the Combustion and Emission Characteristics of DI Diesel Engines and a Matching Method for the Combustion Chamber Geometry
,”
Fuel
,
224
, pp.
644
660
.
41.
Temizer
,
I.
, and
Arı
,
A.
,
2023
, “
Long Term Endurance Analysis of the Effects on Ring Wear and Lubrication Oil of Biofuel Used in a DI Diesel Engine
,”
Int. J. Engine Res.
,
24
(
6
), pp.
2614
2627
.
42.
Temizer
,
I.
, and
Eskici
,
B.
,
2020
, “
Investigation on the Combustion Characteristics and Lubrication of Biodiesel and Diesel Fuel Used in a Diesel Engine
,”
Fuel
,
278
, p.
118363
.
43.
Quanshun
,
L.
,
2013
, “
Tribofilms in Solid Lubricants
,”
Encycl. Tribol.
,
278
, pp.
3760
3767
.
You do not currently have access to this content.