Graphical Abstract Figure
Graphical Abstract Figure
Close modal

Abstract

Shut-in and flowback are critical stages following hydraulic fracturing in shale oil wells. Researching the distribution of reservoir pressure and fluid flow mechanism during shut-in and flowback is important for optimizing these procedures, thereby enhancing well productivity. Therefore, based on the flow mechanism of shale oil, this article establishes a flow equation considering imbibition and seepage, using linear source superposition equivalent to the pressure distribution generated by hydraulic fracturing as the initial condition. The PEBI (Perpendicular BIsection) grid is used to divide the grid for multistage fractured horizontal wells. The simulation results reveal that large-volume fracturing leads to the formation of a high-pressure zone around the wellbore, significantly surpassing the original reservoir pressure, termed as the high-energy band. This high-energy band is demarcated from the original reservoir pressure by the pressure boundary line (PBL). During production, a double-pressure funnel (DPF) manifests within the reservoir, generating a region with the utmost pressure at a specific position within the high-energy band, known as the pressure peak line. Oil located beyond the pressure peak line is unable to flow toward the wellbore. According to the DPF theory of shale oil, fracturing technology should be adopted to form long straight fractures as far as possible whenever feasible to cross the high-energy band. The shale oil optimal duration for shut-in is contingent upon the movement rate of the pressure boundary and the shale imbibition curve.

References

1.
Meng
,
X.
, and
Wang
,
J.
,
2019
, “
Production Performance Evaluation of Multifractured Horizontal Wells in Shale Oil Reservoirs: An Analytical Method
,”
ASME J. Energy Resour. Technol.
,
141
(
10
), p.
102907
.
2.
Zhang
,
G.
,
Zhou
,
Z.
,
Cui
,
C.
,
Zhang
,
J.
, and
Wang
,
J.
,
2024
, “
Shale Oil–Water Two-Phase Flow Simulation Based on Pore Network Modeling
,”
ASME J. Energy Resour. Technol.
,
146
(
2
), p.
021601
.
3.
Palisch
,
T. T.
,
Vincent
,
M.
, and
Handren
,
P. J.
,
2010
, “
Slickwater Fracturing: Food for Thought
,”
SPE Prod. Oper.
,
25
(
3
), pp.
327
344
.
4.
Zhang
,
N.
, and
Guo
,
B.
,
2020
, “
Use of Mathematical Model to Predict the Maximum Permissible Stage Injection Time for Mitigating Frac-Driven Interactions in Hydraulic-Fracturing Shale Gas/Oil Wells
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
082901
.
5.
Kim
,
G.-H.
, and
Yilin Wang
,
J.
,
2014
, “
Interpretation of Hydraulic Fracturing Pressure in Tight Gas Formations
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
032903
.
6.
Wijaya
,
N.
, and
Sheng
,
J. J.
,
2019
, “
Effect of Desiccation on Shut-In Benefits in Removing Water Blockage in Tight Water-Wet Cores
,”
Fuel
,
244
, pp.
314
323
.
7.
Liang
,
T.
,
Luo
,
X.
,
Nguyen
,
Q.
, and
DiCarlo
,
D.
,
2017
, “
Computed-Tomography Measurements of Water Block in Low-Permeability Rocks: Scaling and Remedying Production Impairment
,”
SPE J.
,
23
(
3
), pp.
762
771
.
8.
Dutta
,
R.
,
Lee
,
C.-H.-H.
,
Odumabo
,
S.
,
Ye
,
P.
,
Walker
,
S. C. C.
,
Karpyn
,
Z. T. T.
, and
Ayala H
,
L. F. F.
,
2014
, “
Experimental Investigation of Fracturing-Fluid Migration Caused by Spontaneous Imbibition in Fractured Low-Permeability Sands
,”
SPE Reservoir Eval. Eng.
,
17
(
1
), pp.
74
81
.
9.
Yan
,
Q.
,
Lemanski
,
C.
,
Karpyn
,
Z. T.
, and
Ayala
,
L. F.
,
2015
, “
Experimental Investigation of Shale Gas Production Impairment Due to Fracturing Fluid Migration During Shut-In Time
,”
J. Nat. Gas Sci. Eng.
,
24
, pp.
99
105
.
10.
Mattax
,
C. C.
, and
Kyte
,
J. R.
,
1962
, “
Imbibition Oil Recovery From Fractured, Water-Drive Reservoir
,”
Soc. Pet. Eng. J.
,
2
(
2
), pp.
177
184
.
11.
Andersen
,
,
Salomonsen
,
L.
, and
Sleveland
,
D. S.
,
2022
, “
Characteristic Forced and Spontaneous Imbibition Behavior in Strongly Water-Wet Sandstones Based on Experiments and Simulation
,”
Energies
,
15
(
10
), p.
3531
.
12.
Zhu
,
J.
,
Chen
,
J.
,
Gong
,
Z.
,
Yao
,
T.
,
Wang
,
X.
, and
Nie
,
X.
,
2023
, “
Experimental Investigation on the Characteristics of Microscopic Pore Structure and Spontaneous Imbibition of Chang 7 Continental Shale Oil Reservoir
,”
Proceedings of the International Field Exploration and Development Conference 2022
,
Singapore
, pp.
6337
6355
.
13.
Liu
,
Y.
,
Leung
,
J. Y.
, and
Chalaturnyk
,
R.
,
2018
, “
Geomechanical Simulation of Partially Propped Fracture Closure and Its Implication for Water Flowback and Gas Production
,”
SPE Reservoir Eval. Eng.
,
21
(
2
), pp.
273
290
.
14.
Wang
,
Q.
,
Zhao
,
J.
,
Hu
,
Y.
,
Ren
,
L.
, and
Zhao
,
C.
,
2022
, “
Shut-In Time Optimization After Fracturing in Shale Oil Reservoirs
,”
Pet. Explor. Dev.
,
49
(
3
), pp.
671
683
.
15.
Huang
,
X.
,
Wang
,
L.
,
Wang
,
N.
,
Li
,
M.
,
Wu
,
S.
,
Ding
,
Q.
,
Xu
,
S.
,
Tuo
,
Z.
, and
Yu
,
W.
,
2023
, “
The Characteristics of Fracturing Fluid Distribution After Fracturing and Shut-In Time Optimization in Unconventional Reservoirs Using NMR
,”
Processes
,
11
(
8
), pp.
2393
.
16.
Xu
,
J.
,
Liu
,
R.
, and
Liu
,
H.
,
2023
, “
Optimization of Shut-In Time Based on Saturation Rebalancing in Volume-Fractured Tight Oil Reservoirs
,”
Pet. Explor. Dev.
,
50
(
6
), pp.
1445
1454
.
17.
Jia
,
Z.
,
Cheng
,
L.
,
Zhou
,
J.
,
Cao
,
R.
,
Pu
,
B.
,
Jia
,
P.
, and
Chen
,
M.
,
2023
, “
Upscaling Simulation Method of Fluid Flow for Fracturing-Shut in-Flowback-Production Process in Tight Oil Reservoirs: Hysteresis Effects of Capillary Pressure and Relative Permeability
,”
Geoenergy Sci. Eng.
,
226
, p.
211792
.
18.
Liu
,
J.
,
Jiang
,
L.
,
Liu
,
T.
, and
Yang
,
D.
,
2022
, “
Modeling Tracer Flowback Behaviour for a Multifractured Horizontal Well in a Tight Oil Reservoir Using the Embedded Discrete Fracture Model
,”
J. Pet. Sci. Eng.
,
212
, p.
110347
.
19.
Qu
,
Z.
,
Wang
,
J.
,
Guo
,
T.
,
Shen
,
L.
,
Liao
,
H.
,
Liu
,
X.
,
Fan
,
J.
, and
Hao
,
T.
,
2021
, “
Optimization on Fracturing Fluid Flowback Model After Hydraulic Fracturing in Oil Well
,”
J. Pet. Sci. Eng.
,
204
, p.
108703
.
20.
Lin
,
H.
,
Zhou
,
X.
,
Chen
,
Y.
,
Yang
,
B.
,
Song
,
X.
,
Sun
,
X.
, and
Dong
,
L.
,
2021
, “
Investigation of the Factors Influencing the Flowback Ratio in Shale Gas Reservoirs: A Study Based on Experimental Observations and Numerical Simulations
,”
ASME J. Energy Resour. Technol.
,
143
(
11
), p.
113201
.
21.
Wang
,
L.
, and
Wen
,
H.
,
2020
, “
Experimental Investigation on the Factors Affecting Proppant Flowback Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
5
), p.
053001
.
22.
Wang
,
M.
, and
Leung
,
J.
,
2016
, “
Numerical Investigation of Coupling Multiphase Flow and Geomechanical Effects on Water Loss During Hydraulic-Fracturing Flowback Operation
,”
SPE Reservoir Eval. Eng.
,
19
(
3
), pp.
520
537
.
23.
Liu
,
Y.
,
Liu
,
L.
,
Leung
,
J.
,
Wu
,
K.
, and
Moridis
,
G. J.
,
2020
, “
Numerical Investigation of Water Flowback Characteristics for Unconventional Gas Reservoirs With Complex Fracture Geometries
,”
Paper Presented at the SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Virtual
.
24.
Da
,
Q.
,
Yao
,
C.
,
Zhang
,
X.
,
Wang
,
X.-P.
,
Qu
,
X.
, and
Lei
,
G.-L.
,
2022
, “
Investigation on Microscopic Invasion Characteristics and Retention Mechanism of Fracturing Fluid in Fractured Porous Media
,”
Pet. Sci.
,
19
(
4
), pp.
1745
1756
.
25.
Zhang
,
M. N.
,
Nguyen
,
K.
,
Wang
,
Z. Q.
, and
Ayala
,
L. F.
,
2023
, “
Flowback and Early-Time Production Modeling of Unconventional Gas Wells Using an Improved Semi-Analytical Method
,”
Pet. Sci.
,
20
(
6
), pp.
3441
3449
.
26.
Duan
,
Y.
,
Zhu
,
Z.
,
He
,
H.
,
Xuan
,
G.
, and
Yu
,
X.
,
2023
, “
Simulation of Two-Phase Flowback Phenomena in Shale Gas Wells
,”
Fluid Dyn. Mater. Process.
,
20
(
2
), pp.
349
364
.
27.
Lu
,
Z.
,
Li
,
X.
,
Liang
,
X.
, and
Hao
,
Y.
,
2022
, “
Study on Double Pressure Funnels and Gas-Liquid Two-Way Mass Transfer After Fracturing in Shale Gas Reservoirs
,”
Geofluids
,
2022
(
1
), p.
3533827
.
28.
Hu
,
Y.
,
Zhao
,
C.
,
Zhao
,
J.
,
Wang
,
Q.
,
Jin
,
Z.
,
Gao
,
D.
, and
Fu
,
C.
,
2020
, “
Mechanisms of Fracturing Fluid Spontaneous Imbibition Behavior in Shale Reservoir: A Review
,”
J. Nat. Gas Sci. Eng.
,
82
, p.
103498
.
29.
Li
,
G.
,
Su
,
Y.
,
QI
,
D.
,
Sun
,
Q.
, and
Wang
,
W.
,
2022
, “
Mathematical Model of Imbibition in Porous Media of Fractured Shale Reservoir and Its Application
,”
J. Cent. South Univ. Sci. Technol.
,
53
(
9
), pp.
3301
3310
.
30.
Li
,
D.
,
Zha
,
W.
,
Liu
,
S.
,
Wang
,
L.
, and
Lu
,
D.
,
2016
, “
Pressure Transient Analysis of Low Permeability Reservoir With Pseudo Threshold Pressure Gradient
,”
J. Pet. Sci. Eng.
,
147
, pp.
308
316
.
31.
Nnadi
,
M.
, and
Onyekonwu
,
M.
,
2004
, “
Numerical Welltest Analysis
,”
Nigeria Annual International Conference and Exhibition
, SPE 88876.
32.
Palagi
,
C. L.
, and
Aziz
,
K.
,
1994
, “
Use of Voronoi Grid in Reservoir Simulation
,”
SPE Adv. Technol.
,
2
(
2
), pp.
69
77
.
33.
Li
,
D.
,
Wang
,
J. Y.
,
Zha
,
W.
, and
Lu
,
D.
,
2018
, “
Pressure Transient Behaviors of Hydraulically Fractured Horizontal Shale-Gas Wells by Using Dual-Porosity and Dual-Permeability Model
,”
J. Pet. Sci. Eng.
,
164
, pp.
531
545
.
You do not currently have access to this content.