Abstract

The purpose of the present study is to investigate the effects of radiative heat transfer, atomization air temperature and mass flowrate, and fuel initial temperature on liquid diesel fuel (C16H34) combustion. Fuel is injected by an airblast atomizer inside a model cylindrical combustion chamber. Geometry of the airblast atomizer is modeled in detail so that its impacts on droplet breakup and flow formation are accurately considered. Evaporating fuel spray is simulated by the discrete phase model based on the Eulerian–Lagrangian approach. Turbulent viscosity is numerically computed by the realizable k–ɛ turbulence model while the discrete ordinates model and the steady flamelet model are applied for modeling the radiative heat transfer and combustion, respectively. NO species concentrations are achieved using post-processing. It turns out that neglecting thermal radiation in well-atomized spray combustion only affects high-temperature zones by increasing the axial temperature values of the mixture by almost 8%. Thermal radiation has an imperative effect on producing NO species. Without considering thermal radiation, axial NO concentration becomes almost doubled. Augmentation in mass flowrate and temperature values of atomization air enhances spray formation and combustion efficiency by increasing the evaporation rate. Changing the fuel temperature from 300 K to 325 K rises the total temperature at the end of the centerline of the model combustion chamber by 9.8%. It is shown that increasing the fuel’s initial temperature is not a suitable choice compared to enhancing the temperature and mass flowrate of the atomization air.

References

1.
Jin
,
Z.-C.
,
Sun
,
F.-X.
,
Xia
,
X.-L.
, and
Sun
,
C.
,
2019
, “
Numerical Investigation of Evaporation and Radiation Absorption of a Non-Spherical Water Droplet Under Asymmetrically Radiative Heating
,”
Int. J. Heat Mass Transfer
,
140
, pp.
66
79
.
2.
Kitano
,
T.
,
Nishio
,
J.
,
Kurose
,
R.
, and
Komori
,
S.
,
2014
, “
Effects of Ambient Pressure, Gas Temperature and Combustion Reaction on Droplet Evaporation
,”
Combust. Flame
,
161
(
2
), pp.
551
564
.
3.
Chen
,
W.
,
Gao
,
R.
,
Sun
,
J.
,
Lei
,
Y.
, and
Fan
,
X.
,
2018
, “
Modeling of an Isolated Liquid Hydrogen Droplet Evaporation and Combustion
,”
Cryogenics
,
96
, pp.
151
158
.
4.
Fang
,
B.
,
Chen
,
L.
,
Li
,
G.
, and
Wang
,
L.
,
2019
, “
Multi-Component Droplet Evaporation Model Incorporating the Effects of Non-Ideality and Thermal Radiation
,”
Int. J. Heat Mass Transfer
,
136
, pp.
962
971
.
5.
Watanabe
,
H.
,
Kurose
,
R.
,
Komori
,
S.
, and
Pitsch
,
H.
,
2008
, “
Effects of Radiation on Spray Flame Characteristics and Soot Formation
,”
Combust. Flame
,
152
(
1
), pp.
2
13
.
6.
Bazdidi-Tehrani
,
F.
, and
Zeinivand
,
H.
,
2010
, “
Presumed PDF Modeling of Reactive Two-Phase Flow in a Three Dimensional Jet-Stabilized Model Combustor
,”
Energy Convers. Manage.
,
51
(
1
), pp.
225
234
.
7.
Ghose
,
P.
,
Patra
,
J.
,
Datta
,
A.
, and
Mukhopadhyay
,
A.
,
2016
, “
Prediction of Soot and Thermal Radiation in a Model Gas Turbine Combustor Burning Kerosene Fuel Spray at Different Swirl Levels
,”
Combust. Theory Model.
,
20
(
3
), pp.
457
485
.
8.
Urbán
,
A.
,
Zaremba
,
M.
,
Malý
,
M.
,
Józsa
,
V.
, and
Jedelský
,
J.
,
2017
, “
Droplet Dynamics and Size Characterization of High-Velocity Airblast Atomization
,”
Int. J. Multiphase Flow
,
95
, pp.
1
11
.
9.
Urbán
,
A.
,
Malý
,
M.
,
Józsa
,
V.
, and
Jedelský
,
J.
,
2019
, “
Effect of Liquid Preheating on High-Velocity Airblast Atomization: From Water to Crude Rapeseed Oil
,”
Exp. Therm. Fluid. Sci.
,
102
, pp.
137
151
.
10.
Panchasara
,
H.
, and
Agrawal
,
A.
,
2017
, “
Effect of Enclosed Flame on Spray Characteristics and Emissions From Preheated Bio-Oil Using an Air-Blast Atomizer
,”
Energy Procedia
,
110
, pp.
216
222
.
11.
Pourhoseini
,
S. H.
, and
Ghodrat
,
M.
,
2021
, “
A Comparative Analysis of Flame Temperature, Radiation Behaviors, and NOx Emission of an Oil Burner Fueled With Nano Biodiesel Blend Fuel Containing Suspended Energetic and Non-Energetic Metal Nanoparticles
,”
ASME J. Energy Resour. Technol.
,
143
(
12
), p.
122305
.
12.
Ibrahim
,
I. A.
,
Farag
,
T. M.
,
Abdel-baky
,
M. E.
,
Abd El-samed
,
A. K.
, and
Gad
,
H. M.
,
2020
, “
Experimental Study of Spray Combustion Characteristics of Air-Blast Atomizer
,”
Energy Rep.
,
6
, pp.
209
215
.
13.
Lokini
,
P.
,
Roshan
,
D. K.
, and
Kushari
,
A.
,
2019
, “
Influence of Swirl and Primary Zone Airflow Rate on the Emissions and Performance of a Liquid-Fueled Gas Turbine Combustor
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
062009
.
14.
Pourhoseini
,
S. H.
, and
Asadi
,
R.
,
2016
, “
An Experimental Study of Optimum Angle of Air Swirler Vanes in Liquid Fuel Burners
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
032202
.
15.
Ibrahim
,
I. A.
,
Elzallat
,
A. M.
,
Elsakka
,
M. M.
,
Farag
,
T. M.
, and
Gad
,
H. M.
,
2022
, “
Numerical Study of Kerosene Spray and Combustion Characteristics Using an Air-Blast Atomizer
,”
Energy Rep.
,
8
, pp.
5974
5986
.
16.
Bauer
,
H. J.
,
Eigenmann
,
L.
,
Scherrer
,
B.
, and
Wittig
,
S.
,
1995
, “
Local Measurements in a Three Dimensional Jet-Stabilized Model Combustor
,”
ASME 1995 International Gas Turbine and Aeroengine Congress and Exposition
,
Houston, TX
,
June 5–8
, p. V003T06A015.
17.
Bazdidi-Tehrani
,
F.
,
Teymoori
,
A.
, and
Ghiyasi
,
M.
,
2022
, “
Sensitivity Analysis of Pollutants and Pattern Factor in a Gas Turbine Model Combustor due to Changes in Stabilizing Jets Characteristics
,”
J. Therm. Sci.
,
31
(
5
), pp.
1622
1641
.
18.
Bazdidi-Tehrani
,
F.
, and
Abedinejad
,
M. S.
,
2018
, “
Influence of Incoming Air Conditions on Fuel Spray Evaporation in an Evaporating Chamber
,”
Chem. Eng. Sci.
,
189
, pp.
233
244
.
19.
Berlemont
,
A.
,
Grancher
,
M. S.
, and
Gouesbet
,
G.
,
1995
, “
Heat and Mass Transfer Coupling Between Vaporizing Droplets and Turbulence Using a Lagrangian Approach
,”
Int. J. Heat Mass Transfer
,
38
(
16
), pp.
3023
3034
.
20.
Gosman
,
A. D.
, and
Loannides
,
E.
,
1983
, “
Aspects of Computer Simulation of Liquid-Fueled Combustors
,”
J. Energy
,
7
(
6
), pp.
482
490
.
21.
Liu
,
A.
,
Mather
,
D.
, and
Reitz
,
R.
,
1993
, “
Modeling the Effects of Drop Drag and Breakup on Fuel Sprays
,” SAE Technical Paper No. 930072.
22.
Miller
,
R. S.
,
Harstad
,
K.
, and
Bellan
,
J.
,
1998
, “
Evaluation of Equilibrium and Non-Equilibrium Evaporation Models for Many-Droplet Gas-Liquid Flow Simulations
,”
Int. J. Multiphase Flow
,
24
(
6
), pp.
1025
1055
.
23.
Sazhin
,
S. S.
,
2006
, “
Advanced Models of Fuel Droplet Heating and Evaporation
,”
Prog. Energy Combust. Sci.
,
32
(
2
), pp.
162
214
.
24.
Ranz
,
W. E.
, and
Marshall
,
W. R.
,
1952
, “
Evaporation From Drops, Part I and Part II
,”
Chem. Eng. Prog.
,
48
(
4
), pp.
173
180
.
25.
Kuo
,
K. K.
,
1986
,
Principles of Combustion
,
Wiley
,
New York
.
26.
Senecal
,
P. K.
,
Schmidt
,
D. P.
,
Nouar
,
I.
,
Rutland
,
C. J.
,
Reitz
,
R. D.
, and
Corradini
,
M. L.
,
1999
, “
Modeling High-Speed Viscous Liquid Sheet Atomization
,”
Int. J. Multiphase Flow
,
25
(
6
), pp.
1073
1097
.
27.
Reitz
,
R.
,
1987
, “
Modeling Atomization Processes in High-Pressure Vaporizing Sprays
,”
At. Spray Technol.
,
3
(
4
), pp.
309
337
.
28.
Shih
,
T.-H.
,
Liou
,
W. W.
,
Shabbir
,
A.
,
Yang
,
Z.
, and
Zhu
,
J.
,
1995
, “
A New k–ɛ Eddy Viscosity Model for High Reynolds Number Turbulent Flows
,”
Comput. Fluids
,
24
(
3
), pp.
227
238
.
29.
Bazdidi-Tehrani
,
F.
,
Mirzaei
,
S.
, and
Abedinejad
,
M. S.
,
2017
, “
Influence of Chemical Mechanisms on Spray Combustion Characteristics of Turbulent Flow in a Wall Jet Can Combustor
,”
Energy Fuels
,
31
(
7
), pp.
7523
7539
.
30.
Pitsch
,
H.
, and
Peters
,
N.
,
1998
, “
A Consistent Flamelet Formulation for Non-Premixed Combustion Considering Differential Diffusion Effects
,”
Combust. Flame
,
114
(
1
), pp.
26
40
.
31.
Ranzi
,
E.
,
Frassoldati
,
A.
,
Stagni
,
A.
,
Pelucchi
,
M.
,
Cuoci
,
A.
, and
Faravelli
,
T.
,
2014
, “
Reduced Kinetic Schemes of Complex Reaction Systems: Fossil and Biomass-Derived Transportation Fuels
,”
Int. J. Chem. Kinet.
,
46
(
9
), pp.
512
542
.
32.
Modest
,
M. F.
,
1993
,
Radiative Heat Transfer
,
McGraw-Hill
,
New York
.
33.
Fiveland
,
W. A.
,
1984
, “
Discrete-Ordinates Solutions of the Radiative Transport Equation for Rectangular Enclosures
,”
ASME J. Heat Transfer-Trans. ASME
,
106
(
4
), pp.
699
706
.
34.
Hottel
,
H. C.
, and
Sarofim
,
A. F.
,
1967
,
Radiative Transfer
,
McGraw-Hill
,
New York
.
35.
Gad
,
H. M.
,
Ibrahim
,
I. A.
,
Abdel-baky
,
M. E.
,
Abd El-samed
,
A. K.
, and
Farag
,
T. M.
,
2018
, “
Experimental Study of Diesel Fuel Atomization Performance of Air Blast Atomizer
,”
Exp. Therm. Fluid. Sci.
,
99
, pp.
211
218
.
36.
Beér
,
J. M.
, and
Chigier
,
N. A.
,
1972
,
Combustion Aerodynamics
,
J. M.
Beér
, and
N. A.
Chigier
, eds.,
Applied Science Publishers Limited
,
London
.
37.
Patankar
,
S. V.
,
1980
,
Numerical Heat Transfer and Fluid Flow
,
Hemisphere Publishing Corporation
,
Washington
.
38.
Versteeg
,
H. K.
, and
Malalasekera
,
W.
,
2007
,
An Introduction to Computational Fluid Dynamics: The Finite Volume Method
,
Pearson Education Limited
,
Harlow, UK
.
39.
Zel'dovich
,
Y. B.
,
Sadovnikov
,
P. Y.
, and
Frank-Kamenetskii
,
D.
,
1947
,
Nitrogen Oxidation in Combustion
,
Izd. Akad. Nauk SSSR
,
Moscow
.
40.
De Soete
,
G. G.
,
1975
, “
Overall Reaction Rates of NO and N2 Formation From Fuel Nitrogen
,”
Symp. (Int.) Combust.
,
15
(
1
), pp.
1093
1102
.
41.
Westbrook
,
C. K.
, and
Dryer
,
F. L.
,
1984
, “
Chemical Kinetic Modeling of Hydrocarbon Combustion
,”
Prog. Energy Combust. Sci.
,
10
(
1
), pp.
1
57
.
You do not currently have access to this content.