Abstract

In this study, the internal cooling channel was investigated without any bend. Smooth surfaces and dimpled surfaces were investigated using the different combinations of connecting circular and rectangular holes. The computations were performed using the large eddy simulation (LES) model for Reynolds (Re) numbers from 10,000 to 50,000. A total of six different connecting holes were investigated with a smooth and dimpled surface. A partial spherical dimple with two circular holes showed the highest heat transfer, but it has a higher pressure loss penalty. Even though the leaf dimpled surface with the rectangluar holes indicated a little low heat transfer, it represents the highest efficiency at higher Reynolds numbers because of the low-pressure drops.

References

1.
U.S. Energy Information Administration
,
2020
, “
How Electricity is Generated
,”
Retrieved from How Electricity is Generated—U.S. Energy Information Administration (EIA), Accessed on January 24, 2021
.
2.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2021
, “
Review of Gas Turbine Internal Cooling Improvement Technology
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080801
.
3.
Salem
,
A. R.
,
Nourin
,
F. N.
,
Abousabae
,
M.
, and
Amano
,
R. S.
,
2021
, “
Experimental and Numerical Study of Jet Impingement Cooling for Improved Gas Turbine Blade Internal Cooling With In-Line and Staggered Nozzle Arrays
,”
ASME J. Energy Resour. Technol.
,
143
(
1
), p.
012103
. doi.org/10.1115/1.4047600
4.
Nourin
,
F. N.
, and
Amano
,
R. S.
,
2020
, “
Study on Heat Transfer Enhancement of Gas Turbine Blades
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
91
106
.
5.
Nourin
,
F. N.
,
Salem
,
A. R.
, and
Amano
,
R. S.
,
2020
, “
Investigation Of Jet Impingement Cooling For Gas Turbine Blade With In-Line And Staggered Nozzle Arrays
,”
Int. J. Energy Clean Environ.
,
21
(
2
), pp.
169
182
.
6.
Amano
,
R. S.
,
Nourin
,
F. N.
,
Salem
,
A. R. S.
, and
DiPasquale
,
N.
,
2019
, “
Investigation of Experimental Jet Array for Impinging Cooling of Blades
,”
AIAA Propulsion and Energy 2019 Forum
, p.
4240
.
7.
Wang
,
Z.
,
Ireland
,
P. T.
,
Kohler
,
S. T.
, and
Chew
,
J. W.
,
1996, January
, “
Heat Transfer Measurements to a gas Turbine Cooling Passage With Inclined Ribs
,”
ASME 1996 International Gas Turbine and Aeroengine Congress and Exhibition
,
American Society of Mechanical Engineers Digital Collection
.
8.
Han
,
J. C.
, and
Chen
,
H. C.
,
2006
, “
Turbine Blade Internal Cooling Passages With Rib Turbulators
,”
J. Propul. Power
,
22
(
2
), pp.
226
248
.
9.
Choi
,
E. Y.
,
Choi
,
Y. D.
,
Lee
,
W. S.
,
Chung
,
J. T.
, and
Kwak
,
J. S.
,
2013
, “
Heat Transfer Augmentation Using a Rib–Dimple Compound Cooling Technique
,”
Appl. Therm. Eng.
,
51
(
1–2
), pp.
435
441
.
10.
Ligrani
,
P.
,
2013
, “
Heat Transfer Augmentation Technologies for Internal Cooling of Turbine Components of Gas Turbine Engines
,”
Int. J. Rotating Mach.
,
2013
(
Special Issue
), pp.
1
32
.
11.
Saravani
,
M. S.
,
Amano
,
R. S.
,
DiPasquale
,
N. J.
, and
Halmo
,
J. W.
,
2020
, “
Turning Guide Vane Effect on Internal Cooling of Two-Passage Channel With Parallel Ribs
,”
ASME J. Energy Resour. Technol.
,
142
(
9
), p.
091303
. doi.org/10.1115/1.4046731
12.
Amano
,
R. S.
,
Lucci
,
J. M.
,
Guntur
,
K.
, and
Song
,
B.
,
2012
, “
Numerical Study of the Thermal Development in a Rotating Cooling Passage
,”
Heat Mass Transfer
,
48
(
6
), pp.
1011
1022
.
13.
Rahman
,
M. L.
,
Salsabil
,
Z.
,
Yasmin
,
N.
,
Nourin
,
F. N.
, and
Ali
,
M.
,
2016, July
, “
Effect of Using Ethanol and Methanol on Thermal Performance of a Closed Loop Pulsating Heat Pipe (CLPHP) With Different Filling Ratios
,”
AIP Conference Proceedings
, Vol.
1754
, No.
1
, p.
050014
,
AIP Publishing LLC
.
14.
Rahman
,
M. L.
,
Nourin
,
F. N.
,
Salsabil
,
Z.
,
Yasmin
,
N.
, and
Ali
,
M.
,
2016
, “
An Experimental Study on the Performance of Closed Loop Pulsating Heat Pipe (CLPHP) With Methanol as a Working Fluid
,”
AIP Conference Proceedings
, Vol.
1754
, No.
1
, p.
050012
,
AIP Publishing LLC
.
15.
Kumar
,
S.
,
Amano
,
R. S.
, and
Lucci
,
J. M.
,
2013
, “
Numerical Simulations of Heat Transfer Distribution of a Two-Pass Square Channel With V-Rib Turbulator and Bleed Holes
,”
Heat Mass Transfer
,
49
(
8
), pp.
1141
1158
.
16.
Amano
,
R. S.
,
Ekkad
,
S.
, and
Wroblewski
,
D.
,
2000
, “
Heat Transfer in Turbomachinery
,”
Proceedings of the ASME Heat Transfer Division
, Vol.
366–3
,
ASME
,
New York
.
17.
Amano
,
R. S.
,
1998
, “Turbulent Heat Transfer in Corrugated Wall Channel,”
Computer Simulations in Compact Heat Exchangers
,
Computational Mechanics Publications
,
UK
, pp.
115
149
. [Invited Paper].
18.
Amano
,
R. S.
,
Abou-Ellail
,
M. M.
,
Elhaw
,
S.
, and
Ibrahim
,
M. S.
,
2013
, “
Numerical Simulation of Hydrogen-Air Reacting Flows in Rectangular Channels With Catalytic Surface Reactions
,”
Heat Mass Transfer
,
49
(
9
), pp.
1243
1260
.
19.
Amano
,
R. S.
,
Abou-Ellail
,
M. M.
, and
Kaseb
,
S.
,
2009
, “
Numerical Predictions of Hydrogen-Air Rectangular Channel Flows Augmented by Catalytic Surface Reactions
,”
ASME International Mechanical Engineering Congress and Exposition
, Vol.
43765
,
January
, pp.
411
426
.
20.
Maruszewski
,
J. P.
, and
Amano
,
R. S.
,
1988
, “
Grid Generation and Its Application to Turbulent Separated Flows
,”
Numer. Grid Gener. Comput. Fluid Mech.
, pp.
885
894
.
21.
Choi
,
J. C.
, and
Amano
,
R. S.
,
1992
, “
Application of a Higher-Order Turbulence Closure Model to Plane jet
,”
Numer. Heat Transfer
,
21
(
1
), pp.
21
35
.
22.
Amano
,
R. S.
,
1989
, “
Turbulence Energy Redistributive Model
,”
Proceedings of the Sixth International Conference
,
Swansea, Wales
,
July 11–15
.
23.
Amano
,
R. S.
, and
Maruszewski
,
J. P.
,
1988
, “
Computations of Separating Flows by Using Boundary—Fitted Curvilinear Coordinate
,”
Proceedings of the 25th National Heat Transfer Conference of Japan
, Vol.
2
,
Kanazawa, Japan
, pp.
160
162
.
24.
Amano
,
R. S.
, and
Chai
,
J. C.
,
1988
,
Transport Phenomena in Turbulent Flows
,
M.
Hirata
, and
N.
Kasagi
, eds.,
Hemisphere Publishing Corporation
,
New York
, pp.
649
660
.
25.
Maruszewski
,
J. P.
, and
Amano
,
R. S.
,
1988
, “
A Study of Turbulent Flow Computations in an Angled Duct With a Step
,”
Proceedings of the Symposium, ASME Winter Annual Meeting
,
Chicago, IL
,
Nov. 27–Dec. 2
, pp.
43
47
.
26.
Amano
,
R.
,
1986, June
, “
Turbulence Energy and Diffusion Transport in a Separating and Reattaching Flow
,”
22nd Joint Propulsion Conference
, p.
1724
.
27.
Amano
,
R. S.
, and
Chai
,
J. C.
,
1988
, “
Transport Models of the Turbulent Velocity-Temperature Products for Computations of Recirculating Flows
,”
Numer. Heat Transfer, Part A
,
14
(
1
), pp.
75
95
.
28.
Amano
,
R. S.
, and
Goel
,
P.
,
1987
, “
Investigation of Third-Order Closure Model of Turbulence for the Computation of Incompressible Flows in a Channel With a Backward-Facing Step
,”
J. Fluid. Eng.
,
109
(
4)
, pp.
424
428
.
29.
Amano
,
R. S.
,
Bagherlee
,
A.
,
Smith
,
R. J.
, and
Niess
,
T. G.
,
1987
, “
Turbulent Heat Transfer in Corrugated-Wall Channels With and Without Fins
,”
ASME J. Heat Transfer-Trans. ASME
,
109
(
1)
, pp.
62
67
.
30.
Amano
,
R. S.
,
1987
, “
A Numerical Study of Turbulent Heat Transfer in a Channel With Bends Using Reynolds-Stress Model
,”
Chem. Eng. Commun.
,
51
(
1–6
), pp.
207
219
.
31.
Amano
,
R. S.
, and
Sunden
,
B.
,
2014
,
Impingement Jet Cooling in Gas Turbines
,
WIT Press
,
Ashurst, UK
, p.
252
.
32.
Amano
,
R. S.
,
2008
, “Advances in Gas Turbine Blade Cooling Technology,”
Advanced Computational Methods and Experiments in Heat Transfer X
,
WIT Press
,
Southampton, UK
.
33.
Amano
,
R. S.
,
Wang
,
K. D.
, and
Pavelic
,
V.
,
1994
, “
A Study of Rotor Cavities and Heat Transfer in a Cooling Process in a Gas Turbine
,”
ASME J. Turbomach.
,
116
(
2
), pp.
333
338
.
34.
Amano
,
R. S.
,
Abou-Ellail
,
M. M.
, and
Kaseb
,
S.
,
2012
, “
Numerical Predictions of Hydrogen-Air Rectangular Channel Flows Augmented by Catalytic Surface Reactions
,”
ASME J. Heat Transfer-Trans. ASME
,
134
(
4
), p.
041201
.
35.
Metzger
,
D.
, and
Sahm
,
M.
,
1986
, “
Heat Transfer Around Sharp 180-Deg Turns in Smooth Rectangular Channels
,”
ASME J. Heat Transfer-Trans. ASME
,
108
(
3
), pp.
500
506
.
36.
Rao
,
Y.
,
Feng
,
Y.
,
Li
,
B.
, and
Weigand
,
B.
,
2015
, “
Experimental and Numerical Study of Heat Transfer and Flow Friction in Channels with Dimples of Different Shapes
,”
ASME J. Heat Transfer-Trans. ASME
,
137
(
3
), p.
031901
.
37.
Nishida
,
S.
,
Murata
,
A.
,
Saito
,
H.
, and
Iwamoto
,
K.
,
2009
, “
Measurement of Heat and Fluid Flow on Surface with Teardrop-Shaped Dimples
,”
Proceedings of the Asian Congress on Gas Turbines, 2009-8
, pp.
1
4
.
38.
Amano
,
R. S.
, and
Song
,
B.
,
2005
, “Simulation of Turbulent Flow in a Duct With and Without Rotation—Cooling Passage of Gas Turbine Blades,”
Modeling and Simulation of Turbulent Heat Transfer
,
WIT Press
,
UK
, pp.
315
348
.
39.
Amano
,
R. S.
,
2002
, “Heat Transfer Predictions of Stator/Rotor Blades and Rotating Disk,”
Heat Transfer in Gas Turbine Systems
,
WIT Press
,
UK
, pp.
227
261
. [Invited Paper].
40.
Amano
,
R. S.
,
1995
,
Turbulence, Heat and Mass Transfer
, Vol.
1
,
K.
Hanjalic
, and
J. C. F.
Pereira
, eds.,
Begell House, Inc.
,
Danbury, CT
, pp.
459
465
.
41.
Saravani
,
M. S.
,
DiPasquale
,
N. J.
,
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Heat Transfer in Internal Cooling Channels of gas Turbine Blades: Buoyancy and Density Ratio Effects
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112001
. doi.org/10.1115/1.4043654
42.
Burgess
,
N. K.
, and
Ligrani
,
P. M.
,
2005
, “
Effects of Dimple Depth on Channel Nusselt Numbers and Friction Factors
,”
ASME J. Heat Transfer-Trans. ASME
,
127
(
8
), pp.
839
847
.
43.
Xie
,
S.
,
Liang
,
Z.
,
Zhang
,
J.
,
Zhang
,
L.
,
Wang
,
Y.
, and
Ding
,
H.
,
2019
, “
Numerical Investigation on Flow and Heat Transfer in Dimpled Tube with Teardrop Dimples
,”
Int. J. Heat Mass Transfer
,
131
, pp.
713
723
.
44.
Mahmood
,
G. I.
,
Hill
,
M. L.
,
Nelson
,
D. L.
,
Ligrani
,
P. M.
,
Moon
,
H. K.
, and
Glezer
,
B.
,
2001
, “
Local Heat Transfer and Flow Structure on and Above a Dimpled Surface in a Channel
,”
ASME J. Turbomach.
,
123
(
1
), pp.
115
123
.
45.
Ekkad
,
S. V.
,
Pamula
,
G.
, and
Acharya
,
S.
,
2000
, “
Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in an Internal Coolant Passage of a Turbine Airfoil
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
3
), pp.
587
597
.
46.
Pamula
,
G.
,
Ekkad
,
S. V.
, and
Acharya
,
S.
,
2001
, “
Influence of Crossflow-Induced Swirl and Impingement on Heat Transfer in a Two-Pass Channel Connected by Two Rows of Holes
,”
ASME J. Turbomach.
,
123
(
2
), pp.
281
287
.
47.
Pramanick
,
A. K.
,
2002
, “
Prediction of Heat Transfer & Flow in Rotating Two-Pass Channels Connected by Holes
,”
Master’s thesis
,
Louisiana State University, and Agricultural and Mechanical College
.
48.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2016
, “
Cooling of Turbine Blade Surface With Expanded Exit Holes: Computational Suction-Side Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
5
), p.
051602
.
49.
Forghan
,
F.
,
Askari
,
O.
,
Narusawa
,
U.
, and
Metghalchi
,
H.
,
2017
, “
Cooling of Turbine Blades With Expanded Exit Holes: Computational Analyses of Leading Edge and Pressure-Side of a Turbine Blade
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042004
.
50.
Kumar
,
S.
, and
Amano
,
R. S.
,
2021
, “
An Investigation in the Numerical Approach to Solve the Heat Transfer Phenomenon in Gas Turbine
,”
ASME J. Energy Resour. Technol.
,
143
(
8
), p.
080805
.
51.
Amano
,
R. S.
,
2019
, “
Study on Heat Transfer of a Rotational Turbine Blade System
,”
International Gas Turbine Congress
,
Toranomon, Minato-ku, Tokyo, Japan
,
Nov. 17–22
, IGTC-2019-008.
52.
Amano
,
R. S.
, and
Kumar
,
S.
,
2014
, “
Experimental Investigation of Heat Transfer and Flow Using V and Broken V Ribs Within Gas Turbine Blade Cooling Passage
,”
Heat Mass Transfer
,
51
(
5
), pp.
631
647
.
53.
Amano
,
R. S.
,
1996
, “
Turbulence Heat Transfer Characteristics in a Gas Turbine Stator-Rotor Blade Stage
,”
Proceedings of International Symposium on Turbulence, Heat and Mass Transfer
,
1
, pp.
1
5
.
54.
Breuer
,
M.
, and
Rodi
,
W.
,
1996
, “Large-Eddy Simulation for Complex Turbulent Flows of Practical Interest,”
Flow Simulation with High-Performance Computers II
,
Vieweg + Teubner Verlag
, pp.
258
274
.
You do not currently have access to this content.