Abstract

There is an increased interest in carbon dioxide-based cycles as it requires smaller turbines than conventional Rankine cycles operating with steam. The focus of this work is the study of the performance of a Rankine cycle operating between 500 and 700 K (226.85 and 426.85 °C). Optimum mixtures of hydrocarbons and carbon dioxide have been worked out for use as working fluids in the above temperature range. This study shows that the use of multicomponent mixtures results in higher efficiency and smaller systems suitable for solar-powered small-scale power cycles. A thermal efficiency of 26.5% and volumetric work of 1945 J/l have been estimated with optimum multicomponent mixture derived in this work with a heat source temperature of 600 K and operating pressures of 100 and 40 bar at expander inlet and exit, respectively.

References

1.
Dostal
,
V.
,
2004
,
A Supercritical Carbon Dioxide Cycle for Next Generation Nuclear Reactors
,
Massachusetts Institute of Technology
,
Cambridge, MA
.
2.
Dostal
,
V.
,
Hejzlar
,
P.
, and
Driscoll
,
M. J.
,
2006
, “
The Supercritical Carbon Dioxide Power Cycle: Comparison to Other Advanced Power Cycles
,”
Nucl. Technol.
,
154
(
3
), pp.
283
301
.
3.
Turchi
,
C. S.
,
Ma
,
Z.
,
Neises
,
T. W.
, and
Wagner
,
M. J.
,
2013
, “
Thermodynamic Study of Advanced Supercritical Carbon Dioxide Power Cycles for Concentrating Solar Power Systems
,”
ASME J. Sol. Energy Eng.
,
135
(
4
), p.
041007
.
4.
Reyes-Belmonte
,
M. A.
,
Sebastián
,
A.
,
Romero
,
M.
, and
González-Aguilar
,
J.
,
2016
, “
Optimization of a Recompression Supercritical Carbon Dioxide Cycle for an Innovative Central Receiver Solar Power Plant
,”
Energy
,
112
, pp.
17
27
.
5.
Delgado-torres
,
A. M.
, and
García-rodríguez
,
L.
,
2010
, “
Analysis and Optimization of the Low-Temperature Solar Organic Rankine Cycle (ORC)
,”
Energy Convers. Manage.
,
51
(
12
), pp.
2846
2856
.
6.
Freeman
,
J.
,
Hellgardt
,
K.
, and
Markides
,
C. N.
,
2015
, “
An Assessment of Solar-Powered Organic Rankine Cycle Systems for Combined Heating and Power in UK Domestic Applications
,”
Appl. Energy
,
138
, pp.
605
620
.
7.
Sadeghi
,
M.
,
Nemati
,
A.
, and
Yari
,
M.
,
2016
, “
Thermodynamic Analysis and Multi-Objective Optimization of Various ORC (Organic Rankine Cycle) Configurations Using Zeotropic Mixtures
,”
Energy
,
109
, pp.
791
802
.
8.
Quoilin
,
S.
,
Orosz
,
M.
,
Hemond
,
H.
, and
Lemort
,
V.
,
2011
, “
Performance and Design Optimization of a Low-Cost Solar Organic Rankine Cycle for Remote Power Generation
,”
Sol. Energy
,
85
(
5
), pp.
955
966
.
9.
Li
,
L.
,
Ge
,
Y.
,
Luo
,
X.
, and
Tassou
,
S. A.
,
2017
, “
Experimental Investigation on Power Generation With Low Grade Waste Heat and CO2 Transcritical Power Cycle
,”
Energy Procedia
,
123
, pp.
297
304
.
10.
Angelino
,
G.
,
1968
, “
Carbon Dioxide Condensation Cycles for Power Production
,”
J. Eng. Power
,
90
(
3
), pp.
287
295
.
11.
Feher
,
E. G.
,
1968
, “
The Supercritical Thermodynamic Power Cycle
,”
Energy Convers.
,
8
(
2
), pp.
85
90
.
12.
Wright
,
S. A.
,
Radel
,
R. F.
,
Conboy
,
T. M.
, and
Rochau
,
G. E.
,
2011
, “
Modeling and Experimental Results for Condensing Supercritical CO2 Power Cycles
,” SANDIA Report No. 2010-8840 (January), pp.
1
47
.
13.
Pasch
,
J.
,
Conboy
,
T.
,
Fleming
,
D.
, and
Rochau
,
G.
,
2012
, “
Supercritical Carbondioxide Recompression Brayton Cycle: Completed Assembly Description
,”
Sandia National Laboratories, Report No. SAND2012-9546
(October), pp.
1
40
.
14.
Conboy
,
T.
,
Asme
,
M.
,
Wright
,
S.
, and
Fuller
,
R.
,
2012
, “
Performance Characteristics of an Operating Supercritical CO2 Brayton Cycie
,”
ASME J. Eng. Gas Turbines Power
,
134
(
11
), p.
111703
.
15.
Conboy
,
T.
,
Pasch
,
J.
, and
Fleming
,
D.
,
2013
, “
Control of a Supercritical CO2 Recompression Brayton Cycle Demonstration Loop
,”
ASME J. Eng. Gas Turbines Power
,
135
(
11
), p.
111701
.
16.
Floyd
,
J.
,
Alpy
,
N.
,
Haubensack
,
D.
,
Avakian
,
G.
, and
Rodriguez
,
G.
,
2011
, “
On-Design Efficiency Reference Charts for the Supercritical CO2 Brayton Cycle Coupled to an SFR
,”
Proc. ICAPP
,
2011
, pp.
683
691
.
17.
Sarkar
,
J.
,
2009
, “
Second Law Analysis of Supercritical CO2 Recompression Brayton Cycle
,”
Energy
,
34
(
9
), pp.
1172
1178
.
18.
Ahn
,
Y.
,
Bae
,
S. J.
,
Kim
,
M.
,
Cho
,
S. K.
,
Baik
,
S.
,
Lee
,
J. I.
, and
Cha
,
J. E.
,
2015
, “
Review of Supercritical CO2 Power Cycle Technology and Current Status of Research and Development
,”
Nucl. Eng. Technol.
,
47
(
6
), pp.
647
661
.
19.
Sarkar
,
J.
, and
Bhattacharyya
,
S.
,
2009
, “
Optimization of Recompression S-CO2 Power Cycle With Reheating
,”
Energy Convers. Manage.
,
50
(
8
), pp.
1939
1945
.
20.
Padilla
,
R. V.
,
Too
,
Y. C. S.
,
Benito
,
R.
,
McNaughton
,
R.
, and
Stein
,
W.
,
2016
, “
Thermodynamic Feasibility of Alternative Supercritical CO2 Brayton Cycles Integrated With an Ejector
,”
Appl. Energy
,
169
, pp.
49
62
.
21.
Dyreby
,
J.
,
Klein
,
S.
,
Nellis
,
G.
, and
Reindl
,
D.
,
2014
, “
Design Considerations for Supercritical Carbon Dioxide Brayton Cycles With Recompression
,”
ASME J. Eng. Gas Turbines Power
,
136
(
10
), p.
101701
.
22.
Sami
,
S. M.
,
2010
, “
Energy and Exergy Analysis of New Refrigerant Mixtures in an Organic Rankine Cycle for Low Temperature Power Generation
,”
Int. J. Ambient Energy
,
31
(
1
), pp.
23
32
.
23.
Lee
,
U.
, and
Mitsos
,
A.
,
2017
, “
Optimal Multicomponent Working Fluid of Organic Rankine Cycle for Exergy Transfer From Liquefied Natural Gas Regasification
,”
Energy
,
127
, pp.
489
501
.
24.
Chys
,
M.
,
van den Broek
,
M.
,
Vanslambrouck
,
B.
, and
De Paepe
,
M.
,
2012
, “
Potential of Zeotropic Mixtures as Working Fluids in Organic Rankine Cycles
,”
Energy
,
44
(
1
), pp.
623
632
.
25.
Chaitanya Prasad
,
G. S.
,
Suresh Kumar
,
C.
,
Srinivasa Murthy
,
S.
, and
Venkatarathnam
,
G.
,
2015
, “
Performance of an Organic Rankine Cycle With Multicomponent Mixtures
,”
Energy
,
88
, pp.
690
696
.
26.
Garg
,
P.
,
Kumar
,
P.
,
Srinivasan
,
K.
, and
Dutta
,
P.
,
2013
, “
Evaluation of Carbon Dioxide Blends With Isopentane and Propane as Working Fluids for Organic Rankine Cycles
,”
Appl. Therm. Eng.
,
52
(
2
), pp.
439
448
.
27.
Shu
,
G.
,
Yu
,
Z.
,
Tian
,
H.
,
Liu
,
P.
, and
Xu
,
Z.
,
2018
, “
Potential of the Transcritical Rankine Cycle Using CO2-Based Binary Zeotropic Mixtures for Engine’s Waste Heat Recovery
,”
Energy Convers. Manage.
,
174
, pp.
668
685
.
28.
Venkatarathnam
,
G.
,
Mokashi
,
G.
, and
Murthy
,
S. S.
,
1996
, “
Occurrence of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures
,”
Int. J. Refrig.
,
19
(
6
), pp.
361
368
.
29.
Venkatarathnam
,
G.
, and
Srinivasa Murthy
,
S.
,
1999
, “
Effect of Mixture Composition on the Formation of Pinch Points in Condensers and Evaporators for Zeotropic Refrigerant Mixtures
,”
Int. J. Refrig.
,
22
(
3
), pp.
205
215
.
30.
Aspen Plus
,
2016
,
Aspen Technology, Inc., USA
.
You do not currently have access to this content.