Abstract

In the present work, a method has been developed to estimate the annual capacity factor of waste to energy power plants. The case study is an under-construction power plant located in an area of high precipitation rate. Existing data of the waste analysis in the region shows that its content, including the mass fractions of the paper, food, and plastic, changes daily and seasonally. The variation of the waste analysis in addition to components’ failure and the off-design performance of the steam cycle make the behavior of the system highly stochastic. To deal with this stochastic nature, the probability distribution function (PDF) of waste analysis is constructed to consider a range of possible inputs. Moreover, time-varying failure rates are used in Markov analysis to calculate the system’s availability by considering infant failures, random failures, and aging. Also, the off-design performance of the power plant is simulated by thermoflex to capture nonlinearities caused by steam flow reduction in the steam turbine. The PDFs of the municipal solid waste (MSW) physical analysis are estimated by sampling from a pit near the location. The Monte Carlo simulation has been used to couple the stochastic nature of the MSW content to the simulation and operation of the power plant, modeled by thermoflex. The results show 2300 kW for power generation in full load condition in the first year, highlighting 30% power derate due to municipal solid waste quality reduction.

References

1.
Igarashi
,
M.
,
Hayafune
,
Y.
,
Sugamiya
,
R.
,
Nakagawa
,
Y.
, and
Makishima
,
K.
,
1984
, “
Pyrolysis of Municipal Solid Waste in Japan
,”
ASME J. Energy Resour. Technol.
,
106
(
3
), pp.
377
382
.
2.
de Souza Melaré
,
A. V.
,
González
,
S. M.
,
Faceli
,
K.
, and
Casadei
,
V.
,
2017
, “
Technologies and Decision Support Systems to Aid Solid-Waste Management: A Systematic Review
,”
Waste Manag.
,
59
, pp.
567
584
.
3.
Moya
,
D.
,
Aldás
,
C.
,
López
,
G.
, and
Kaparaju
,
P.
,
2017
, “
Municipal Solid Waste as a Valuable Renewable Energy Resource: A Worldwide Opportunity of Energy Recovery by Using Waste-To-Energy Technologies
,”
Energy Procedia
,
134
, pp.
286
295
.
4.
Tsai
,
F. M.
,
Bui
,
T.-D.
,
Tseng
,
M.-L.
,
Lim
,
M. K.
, and
Hu
,
J.
,
2020
, “
Municipal Solid Waste Management in a Circular Economy: A Data-Driven Bibliometric Analysis
,”
J. Cleaner Prod.
,
275
, p.
124132
.
5.
Choudhary
,
D.
, and
Shankar
,
R.
,
2012
, “
An STEEP-Fuzzy AHP-TOPSIS Framework for Evaluation and Selection of Thermal Power Plant Location: A Case Study From India
,”
Energy
,
42
(
1
), pp.
510
521
.
6.
Ozyuguran
,
A.
,
Haykiri-Acma
,
H.
, and
Yaman
,
S.
,
2019
, “
Which One Does Better Predict the Heating Value of Biomass?—Dry Based or As-Received Based Proximate Analysis Results?
,”
ASME J. Energy Resour. Technol.
,
141
(
11
), p.
112202
.
7.
Yao
,
F.
, and
Wang
,
H.
,
2019
, “
Theoretical Analysis on the Constitution of Calorific Values of Biomass Fuels
,”
ASME J. Energy Resour. Technol.
,
141
(
2
), p.
022207
.
8.
Talari
,
S.
,
Shafie-Khah
,
M.
,
Osório
,
G. J.
,
Aghaei
,
J.
, and
Catalão
,
J. P. S.
,
2018
, “
Stochastic Modelling of Renewable Energy Sources From Operators’ Point-of-View: A Survey
,”
Renew. Sustain. Energy Rev.
,
81
, pp.
1953
1965
.
9.
Ayli
,
U. E.
,
Özgirgin
,
E.
, and
Tareq
,
M.
,
2021
, “
Solar Chimney Power Plant Performance for Different Seasons Under Varying Solar Irradiance and Temperature Distribution
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061303
.
10.
Hays
,
A.
, and
Van Treuren
,
K. W.
,
2019
, “
A Study of Power Production and Noise Generation of a Small Wind Turbine for an Urban Environment
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051202
.
11.
Gamarro
,
H.
,
Gonzalez
,
J. E.
, and
Ortiz
,
L. E.
,
2019
, “
On the Assessment of a Numerical Weather Prediction Model for Solar Photovoltaic Power Forecasts in Cities
,”
ASME J. Energy Resour. Technol.
,
141
(
6
), p.
061203
.
12.
Sohani
,
A.
,
Shahverdian
,
M. H.
,
Sayyaadi
,
H.
,
Samiezadeh
,
S.
,
Doranehgard
,
M. H.
,
Nizetic
,
S.
, and
Karimi
,
N.
,
2021
, “
Selecting the Best Nanofluid Type for A Photovoltaic Thermal (PV/T) System Based on Reliability, Efficiency, Energy, Economic, and Environmental Criteria
,”
J. Taiwan Inst. Chem. Eng.
,
124
, pp.
351
358
.
13.
Shahverdian
,
M. H.
,
Sohani
,
A.
,
Sayyaadi
,
H.
,
Samiezadeh
,
S.
,
Doranehgard
,
M. H.
,
Karimi
,
N.
, and
Li
,
L. K. B.
,
2021
, “
A Dynamic Multi-Objective Optimization Procedure for Water Cooling of a Photovoltaic Module
,”
Sustain. Energy Technol. Assess.
,
45
, p.
101111
.
14.
Niknia
,
I.
, and
Yaghoubi
,
M.
,
2012
, “
Transient Simulation for Developing a Combined Solar Thermal Power Plant
,”
Appl. Therm. Eng.
,
37
, pp.
196
207
.
15.
Rashid
,
K.
,
Mohammadi
,
K.
, and
Powell
,
K.
,
2020
, “
Dynamic Simulation and Techno-Economic Analysis of a Concentrated Solar Power (CSP) Plant Hybridized With Both Thermal Energy Storage and Natural gas
,”
J. Cleaner Prod.
,
248
, p.
119193
.
16.
Conti
,
S.
, and
Raiti
,
S.
,
2007
, “
Probabilistic Load Flow Using Monte Carlo Techniques for Distribution Networks with Photovoltaic Generators
,”
Sol. Energy
,
81
(
12
), pp.
1473
1481
.
17.
Emami
,
N.
, and
Behbahani-Nia
,
A.
,
2012
, “
The Statistical Evaluation of Wind Speed and Power Density in the Firouzkouh Region in Iran
,”
Energy Sources Part A
,
34
(
12
), pp.
1076
1083
.
18.
Bahrami
,
A.
,
Teimourian
,
A.
,
Onyeka
,
C. O.
, and
Shiri
,
H.
,
2019
, “
Technical and Economic Analysis of Wind Energy Potential in Uzbekistan Saving to Investment Ratio Internal Rate of Return
,”
J. Cleaner Prod.
,
223
, pp.
801
814
.
19.
Soleymani
,
S.
,
Mosayebian
,
M. E.
, and
Mohammadi
,
S.
,
2015
, “
A Combination Method for Modeling Wind Power Plants in Power Systems Reliability Evaluation
,”
Comput. Electr. Eng.
,
41
, pp.
28
39
.
20.
Marmidis
,
G.
,
Lazarou
,
S.
, and
Pyrgioti
,
E.
,
2008
, “
Optimal Placement of Wind Turbines in a Wind Park Using Monte Carlo Simulation
,”
Renew. Energy
,
33
(
7
), pp.
1455
1460
.
21.
Cook
,
W. D.
, and
Green
,
R. H.
,
2005
, “
Evaluating Power Plant Efficiency: A Hierarchical Model
,”
Comput. Oper. Res.
,
32
(
4
), pp.
813
823
.
22.
Sabouhi
,
H.
,
Abbaspour
,
A.
,
Fotuhi-firuzabad
,
M.
, and
Dehghanian
,
P.
,
2016
, “
Reliability Modeling and Availability Analysis of Combined Cycle Power Plants
,”
Int. J. Electr. Power Energy Syst.
,
79
, pp.
108
119
.
23.
Mohammad
,
A.
,
Arani
,
A.
,
Zamani
,
V.
, and
Behbahaninia
,
A.
,
2017
, “
Economic Analysis of a Combined Power and Desalination Plant Considering Availability Changes Due to Degradation
,”
Desalination
,
414
, pp.
1
9
.
24.
Talebjedi
,
B.
, and
Behbahaninia
,
A.
,
2021
, “
Availability Analysis of an Energy Hub with CCHP System for Economical Design in Terms of Energy Hub Operator
,”
J. Build. Eng.
,
33
, p.
101564
.
25.
Dooley
,
R.
, and
Wiertel
,
E.
,
2009
, “
A Survey of Erosion and Corrosion Resistant Materials Being Used on Boiler Tubes in Waste to Energy Boilers
,”
17th Annual North American Waste-to-Energy Conference
,
Chantilly, VA
,
May 18–20
, pp.
37
41
.
26.
Banifateme
,
M.
,
Behbahaninia
,
A.
, and
Sayadi
,
S.
,
2021
, “
Development of a Loss Method for Energy and Exergy Audit of Condensing Hot Water Boilers
,”
ASME J. Energy Resour. Technol.
,
143
(
5
), p.
052104
.
27.
Hasselriis
,
F.
,
1989
,
What is Municipal Solid Waste. Refuse Derived Fuel Processing
,
Butterworth Publisher
,
London
.
28.
Liu
,
J.-I.
,
Paode
,
R. D.
, and
Holsen
,
T. M.
,
1996
, “
Modeling the Energy Content of Municipal Solid Waste Using Multiple Regression Analysis
,”
J. Air Waste Manage. Assoc.
,
46
(
7
), pp.
650
656
.
29.
Nzioka
,
A. M.
,
Hwang
,
H.-U.
,
Kim
,
M.-G.
,
Yan
,
C. Z.
,
Lee
,
C.-S.
, and
Kim
,
Y.-J.
,
2017
, “
Effect of Storage Conditions on the Calorific Value of Municipal Solid Waste
,”
Waste Manage. Res.
,
35
(
8
), pp.
863
873
.
30.
Kathiravale
,
S.
,
Yunus
,
M. N. M.
,
Sopian
,
K.
,
Samsuddin
,
A. H.
, and
Rahman
,
R. A.
,
2003
, “
Modeling the Heating Value of Municipal Solid Waste
,”
Fuel
,
82
(
9
), pp.
1119
1125
.
31.
Sector, V. P.
,
2012
, “
Power Generation Biomass for Wind Power
.”
32.
Naderi
,
S.
,
Banifateme
,
M.
,
Pourali
,
O.
,
Behbahaninia
,
A.
,
Macgill
,
I.
, and
Pignatta
,
G.
,
2020
, “
Accurate Capacity Factor Calculation of Waste-to-Energy Power Plants Based on Availability Analysis and Design/off-Design Performance
,”
J. Cleaner Prod.
,
275
, p.
123167
.
33.
Klein
,
S. A.
, and
Alvarda
,
S. F.
,
2007
, “
Engineering Equation Solver (EES)
,” F-Chart Software, WI.
35.
O’Connor
,
P.
, and
Kleyner
,
A.
,
2012
,
Practical Reliability Engineering
,
John Wiley & Sons
,
New York
.
36.
Ali
,
S. R.
,
2018
,
Next Generation and Advanced Network Reliability Analysis: Using Markov Models and Software Reliability Engineering
,
Springer
,
New York
.
37.
El-nashar
,
A. M.
,
2008
, “
Optimal Design of a Cogeneration Plant for Power and Desalination Taking Equipment Reliability Into Consideration
,”
Desalination
,
229
, pp.
21
32
.
38.
Lewis
,
E. E.
,
1987
,
Introduction to Reliability Engineering
,
Wiley
,
New York
.
39.
Smith
,
D. J.
,
2017
,
Reliability, Maintainability and Risk: Practical Methods for Engineers
,
Butterworth-Heinemann
,
Oxford, UK
.
You do not currently have access to this content.