Abstract

Biomass feedstock is broadly available in many countries, and a significant amount of residual biomass comes from agriculture and forest crops. This study aims to identify a consistent criteria for optimize Macaw husks torrefaction process maximizing the energy content and minimizing the mass loss. The optimization criteria is based on the severity factor (SF), HHVTorrefied, and ηSolid-Yield. The energy density (ρEnergy) does not provide consistent and indisputable evidence as an optimization criteria; the same applies to energy-mass co-benefit index (EMCI) and ηEnergy-Yield. This investigation combined few temperatures (180 °C, 220 °C, and 260 °C) with different residence times (20, 40, and 60 min) and found that the optimum torrefaction range for Macaw husk is 220 < T (°C) < 240 and 10 < t (min) < 40. The best experimental result was 220-40 (dry torrefaction at T = 220 °C and t = 40 min) corresponding to SF ∼ 5.14 and HHVTorrefied ∼ 21.71 MJ/kg (ηSolid-Yield ∼ 0.86 and HHVRatio ∼ 1.14). As the raw material has small ρBulk or ρEnergy, the authors suggest the use of a densification process previously to torrefaction. The obtained solid final product had high-quality biofuel following properties: FCdb, H/C, and O/C ratios, high heating value (HHV). The gain and loss optimization method seems promising to identify the optimum torrefaction parameters for any biomass species and the obtained optimum temperature is not far from the ones available as waste heat in industrial processes.

References

1.
Cézar
,
A. S.
,
Almeida
,
F. A.
,
Souza
,
R. P.
,
Silva
,
G. C.
, and
Atabani
,
A. E.
,
2015
, “
The Prospects of Using Acrocomia Aculeata (Macaúba) a non-Edible Biodiesel Feedstock in Brazil
,”
Renewable Sustainable Energy Rev.
,
49
(
9
), pp.
1213
1220
.
2.
Coimbra
,
M. C.
, and
Jorge
,
N.
,
2011
, “
Proximate Composition of Guariroba (Syagrus Oleracea), Jerivá (Syagrus Romanzoffiana) and Macaúba (Acrocomia Aculeata) Palm Fruits
,”
Food Res. Int.
,
44
(
8
), pp.
2139
2142
.
3.
Howell
,
A.
,
Beagle
,
E.
, and
Belmont
,
E.
,
2018
, “
Torrefaction of Healthy and Beetle Kill Pine and Co-Combustion With Sub-Bituminous Coal
,”
ASME J. Energy Resour. Technol.
,
140
(
4
), p.
042002
.
4.
Evaristo
,
A. B.
,
Martino
,
D. C.
,
Ferrarez
,
A. H.
,
Donato
,
D. B.
,
Carneiro
,
A. C. O.
, and
Grossi
,
J. A. S.
,
2016b
, “
“Energy Potential of the Macaw Palm Fruit Residues and Their Use in Charcoal Production” [In Portuguese]
,”
Cienc. Florest.
,
26
(
2
), pp.
571
577
.
5.
Costa
,
S. E. L.
,
Santos
,
R. C.
,
Castro
,
R. V. O.
,
Castro
,
A. F. M. N.
,
Magalhães
,
M. A.
,
Carneiro
,
A. C. O.
,
Santos
,
C. P. S.
,
Gomes
,
I. R. F.
, and
Rocha
,
S. M. G.
,
2019
, “
Briquettes Quality Produced With the Macauba Epicarp (Acrocomia Aculeata) and Pinus sp. Wood
,”
Rev. Arvore
,
43
(
5
), pp.
1
8
.
6.
Moura
,
F. C. C.
,
Rios
,
R. D. F.
, and
Galvão
,
B. R. L.
,
2018
, “
Emerging Contaminants Removal by Granular Activated Carbon Obtained From Residual Macauba Biomass
,”
Environ. Sci. Pollut. Res.
,
25
(
1
), pp.
26482
26492
.
7.
Guilhen
,
S. N.
,
Mašek
,
O.
,
Ortiz
,
N.
,
Izidoro
,
J. C.
, and
Fungaro
,
D. A.
,
2019
, “
Pyrolytic Temperature Evaluation of Macauba Biochar for Uranium Adsorption From Aqueous Solutions
,”
Biomass Bioenergy
,
122
(
3
), pp.
381
390
.
8.
Ramos-Carmona
,
S.
,
Martinéz
,
J. D.
, and
Pérez
,
J. F.
,
2018
, “
Torrefaction of Patula Pine Under air Conditions: A Chemical and Structural Characterization
,”
Ind. Crop. Prod.
,
118
(
8
), pp.
302
310
.
9.
Aguado
,
R.
,
Cuevas
,
M.
,
Perez-Villarejo
,
L.
,
Martínez-Cartas
,
M. L.
, and
Sanchez
,
S.
,
2020
, “
Upgrading Almond-Tree Pruning as a Biofuel via Wet Torrefaction
,”
Renewable Energy
,
145
(
1
), pp.
2091
2100
.
10.
Chen
,
W.-H.
,
Lu
,
K.-M.
,
Lee
,
W.-J.
,
Liu
,
S.-W.
, and
Lin
,
T.-C.
,
2014
, “
Non-Oxidative and Oxidative Torrefaction Characterization and SEM Observations of Fibrous and Ligneous Biomass
,”
Appl. Energy
,
114
(
2
), pp.
104
113
.
11.
Dacres
,
O. D.
,
Tong
,
S.
,
Li
,
X.
,
Zhu
,
X.
,
Edreis
,
E. M. A.
,
Liu
,
H.
,
Luo
,
G.
, et al
,
2019
, “
Pyrolysis Kinetics of Biomasses Pretreated by Gas-Pressurized Torrefaction
,”
Energy Convers Manage.
,
182
(
2
), pp.
117
125
.
12.
Jagodzińska
,
K.
,
Czerep
,
M.
,
Kudlek
,
E.
,
Wnukowski
,
M.
,
Pronobis
,
M.
, and
Yang
,
W.
,
2020
, “
Torrefaction of Agricultural Residues: Effect of Temperature and Residence Time on the Process Products Properties
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
070912
.
13.
Hu
,
B.
,
Liu
,
H.
,
Wang
,
R. Z.
,
Li
,
H.
,
Zhang
,
Z.
, and
Wang
,
S.
,
2017
, “
A High-Efficient Centrifugal Heat Pump with Industrial Waste Heat Recovery for District Heating
,”
Appl. Therm. Eng.
,
125
(
10
), pp.
359
365
.
14.
Kosmadakis
,
G.
,
2019
, “
Estimating the Potential of Industrial (High-Temperature) Heat Pumps for Exploiting Waste Heat in EU Industries
,”
Appl. Therm. Eng.
,
156
(
6
), pp.
287
298
.
15.
Niu
,
Y.
,
Lv
,
Y.
,
Lei
,
Y.
,
Liu
,
S.
,
Liang
,
Y.
,
Wang
,
D.
, and
Hui
,
S.
,
2019
, “
Biomass Torrefaction: Properties, Applications, Challenges, and Economy
,”
Renewable Sustainable Energy Rev.
,
115
(
Nov.
), p.
109395
.
16.
Zhang
,
C.
,
Ho
,
S.-H.
,
Chen
,
W.-H.
,
Fu
,
Y.
,
Chang
,
J.-S.
, and
Bi
,
X.
,
2019
, “
Oxidative Torrefaction of Biomass Nutshells: Evaluations of Energy Efficiency as Well as Biochar Transportation and Storage
,”
Appl. Energy
,
235
(
2
), pp.
428
441
.
17.
ABNT—Brazilian Association of Technical Standards
,
1986
, “NBR 8112: Charcoal: Proximate Analysis—Test Method,” Rio de Janeiro, Brazil, pp.
1
5
.
18.
ABNT—Brazilian Association of Technical Standards
,
1981
, “NBR 7402: Charcoal—Granulometric Determination—Test Method,” Rio de Janeiro, Brazil, pp.
1
3
.
19.
ABNT—Brazilian Association of Technical Standards
,
1982
, “NBR 6922: Charcoal—Physical Tests for Density Determination (Bulk Density),” Rio de Janeiro, Brazil, pp.
1
2
.
20.
ABNT—Brazilian Association of Technical Standards
,
1984
, “NBR 8631: Coal—Ultimate Analysis—Test Method,” Rio de Janeiro, Brazil, pp.
1
12
.
21.
ABNT—Brazilian Association of Technical Standards
,
1990
, “NBR 11956: Coke—Determination of the Gross Calorific Value—Test Method,” Rio de Janeiro, Brazil, pp.
1
6
.
22.
ABNT—Brazilian Association of Technical Standards
,
1986
, “NBR 8633: Charcoal—Determination of Calorific Value—Test Method,” Rio de Janeiro, Brazil, pp.
1
13
.
23.
Da Silva
,
R. L.
,
Júnior
,
J. R. P.
, Jr.
,
Seye
,
O.
,
Michels
,
C. S.
,
De Paula
,
I. O.
, and
Schneider
,
P. S.
,
2020
, “
Experimental Investigation on Eucalyptus Sawdust Torrefaction for Energy Properties Upgrading
,”
Sci. For.
,
48
(
125
), p.
e2931
.
24.
Lu
,
K.-M.
,
Lee
,
W.-J.
,
Chen
,
W.-H.
,
Liu
,
S.-H.
, and
Lin
,
T.-C.
,
2012
, “
Torrefaction and Low Temperature Carbonization of Oil Palm Fiber and Eucalyptus in Nitrogen and Air Atmospheres
,”
Bioresour. Technol.
,
123
(
11
), pp.
98
105
.
25.
Overend
,
R. P.
,
Chornet
,
E.
, and
Gascoigne
,
J. A.
,
1987
, “
Fractionation of Lignocellulosics by Steam-Aqueous Pretreatments [and Discussion]
,”
Philos. Trans. R. Soc. Lond. Ser. A
,
321
(
1561
), pp.
523
536
. http://www.jstor.com/stable/37798
26.
Lee
,
S. M.
, and
Lee
,
J.-W.
,
2014
, “
Optimization of Biomass Torrefaction Conditions by the Gain and Loss Method and Regression Model Analysis
,”
Bioresour. Technol.
,
172
(
11
), pp.
438
443
.
27.
Wilk
,
M.
,
Magdziarz
,
A.
,
Kalemba
,
I.
, and
Gara
,
P.
,
2016
, “
Carbonisation of Wood Residue Into Charcoal During Low Temperature Process
,”
Renewable Energy
,
85
(
1
), pp.
507
513
.
28.
Basu
,
P.
,
2018
,
Biomass Gasification, Pyrolysis and Torrefaction: Practical Design and Theory
, 3rd ed.,
Academic Press
,
Cambridge
, Chap. 4.
29.
Niu
,
Y.
,
Liu
,
S.
,
Shaddix
,
C. R.
, and
Hui
,
S.
,
2019
, “
An Intrinsic Kinetics Model to Predict Complex ash Effects (Ash Film, Dilution, and Vaporization) on Pulverized Coal Char Burnout in air (O2/N2) and Oxy-Fuel (O2/CO2) Atmospheres
,”
Proc. Combust. Inst.
,
37
(
3
), pp.
2781
2790
.
30.
Li
,
T.
,
Niu
,
Y.
,
Wang
,
L.
,
Shaddix
,
C. R.
, and
Løvås
,
T.
,
2018
, “
High Temperature Gasification of High Heating-Rate Chars Using a Flat-Flame Reactor
,”
Appl. Energy
,
227
(
10
), pp.
100
107
.
31.
Rousset
,
W. P. L. A.
,
Davrieux
,
F.
,
Macedo
,
L.
, and
Perré
,
P.
,
2011
, “
Characterization of the Torrefaction of Beech Wood Using NIRS: Combined Effect of Temperature and Duration
,”
Biomass Bioenergy
,
35
(
3
), pp.
1219
1226
.
32.
Teixeira
,
V. L.
,
Carneiro
,
A. D. C. O.
,
Evaristo
,
A. B.
,
de Faria
,
B. D. F. H.
,
Donato
,
D. B.
, and
de Magalhães
,
M. A.
,
2018
, “
Potential of Macauba Epicarp (Acrocomia Aculeata (Jacq.) Lodd. Ex Martius) for Briquettes Production
,”
Floresta
,
48
(
4
), pp.
563
572
.
33.
Evaristo
,
A. B.
,
Grossi
,
J. A. S.
,
Carneiro
,
A. C. O.
,
Pimentel
,
L. D.
,
Motoike
,
S. Y.
, and
Kuki
,
K. N.
,
2016a
, “
Actual and Putative Potentials of Macauba Palm as Feedstock for Solid Biofuel Production From Residues
,”
Biomass Bioenergy
,
85
(
2
), pp.
18
24
.
34.
Júnior
,
A. F. D.
, Jr.
,
Suuchi
,
M. A.
,
Neto
,
A. S. A.
,
da Silva
,
J. G. M.
,
da Silva
,
A. M.
,
de Souza
,
N. D.
,
de Paula Protásio
,
T.
, and
Brito
,
J. O.
,
2021
, “
Blends of Charcoal Fines and Wood Improve the Combustibility and Quality of the Solid Biofuels
,”
Bioenergy Res.
,
14
(
1
), pp.
344
354
.
35.
Rein
,
P.
,
2017
,
Cane Sugar Engineering
, 2nd ed.,
Verlag
,
Berlin, Germany
.
36.
Montoya
,
S. G.
,
Motoike
,
S. Y.
,
Kuki
,
K. N.
, and
Couto
,
A. D.
,
2016
, “
Fruit Development, Growth, and Stored Reserves in Macauba Palm (Acrocomia Aculeata), an Alternative Bioenergy Crop
,”
Planta
,
244
(
1
), pp.
927
938
.
37.
Ciconini
,
G.
,
Favaro
,
S. P.
,
Roscoe
,
R.
,
Miranda
,
C. H. B.
,
Tapeti
,
C. F.
,
Miyahira
,
M. A. M.
,
Bearari
,
L.
, et al
,
2013
, “
Biometry and oil Contents of Acrocomia Aculeata Fruits From the Cerrados and Pantanal Biomes in Mato Grosso do Sul, Brazil
,”
Ind. Crop. Prod.
,
45
(
2
), pp.
208
214
.
38.
Puig-Arnavat
,
M.
,
Shang
,
L.
,
Sárossy
,
Z.
,
Ahrenfeldt
,
J.
, and
Henriksen
,
U. B.
,
2016
, “
From a Single Pellet Press to a Bench Scale Pellet Mill—Pelletizing Six Different Biomass Feedstocks
,”
Fuel Process. Technol.
,
142
(
2
), pp.
27
33
.
39.
Chin
,
K. L.
,
H’ng
,
P. S.
,
Go
,
W. Z.
,
Wong
,
W. Z.
,
Lim
,
T. W.
,
Maminski
,
M.
,
Paridah
,
M. T.
, and
Luqman
,
A. C.
,
2013
, “
Optimization of Torrefaction Conditions for High Energy Density Solid Biofuel From oil Palm Biomass and Fast Growing Species Available in Malaysia
,”
Ind. Crop. Prod.
,
49
(
8
), pp.
768
774
.
40.
Adeleke
,
A. A.
,
Odusote
,
J. K.
,
Lasode
,
O. A.
,
Ikubanni
,
P. P.
,
Malathi
,
M.
, and
Paswan
,
D.
,
2019
, “
Mild Pyrolytic Treatment of Gmelina Arborea for Optimum Energetic Yields
,”
Cogent Eng.
,
6
(
1
), pp.
1
13
.
41.
Ho
,
S.-H.
,
Zhang
,
C.
,
Chen
,
W.-H.
,
Shen
,
Y.
, and
Chang
,
J.-S.
,
2018
, “
Characterization of Biomass Waste Torrefaction Under Conventional and Microwave Heating
,”
Bioresour. Technol.
,
264
(
9
), pp.
7
16
.
42.
Abdelouahed
,
L.
,
Leveneur
,
S.
,
Vernieres-Hassimi
,
L.
,
Balland
,
L.
, and
Taouk
,
B.
,
2017
, “
Comparative Investigation for the Determination of Kinetic Parameters for Biomass Pyrolysis by Thermogravimetric Analysis
,”
J. Therm. Anal. Calorim.
,
129
(
1
), pp.
1201
1213
.
43.
Ortega-Fernández
,
I.
,
Arribalzaga
,
P.
,
Bielsa
,
D.
,
Fernández
,
L.
, and
Unamuno
,
I.
,
2022
, “
Potential Waste Heat Recovery Analysis From Molten Steel Slag: The Case Study of Sidenor Steelworks in Basauri (Spain)
,”
ASME J. Therm. Sci. Eng. Appl.
,
14
(
1
), p.
014502
.
44.
Ishaq
,
H.
, and
Dincer
,
I.
,
2022
, “
An Efficient Energy Utilization of Biomass Energy-Based System for Renewable Hydrogen Production and Storage
,”
ASME J. Energy Resour. Technol.
,
144
(
1
), p.
011701
.
45.
Wang
,
Z.
,
Li
,
J.
,
Burra
,
K. G.
,
Liu
,
X.
,
Li
,
X.
,
Zhang
,
M.
,
Lei
,
T.
, and
Gupta
,
A. K.
,
2021
, “
Synergetic Effect on CO2-Assisted Co-Gasification of Biomass and Plastics
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
031901
.
46.
Meng
,
X.
,
Zhou
,
W.
,
Rokni
,
E.
,
Yang
,
X.
, and
Levendis
,
Y. A.
,
2022
, “
Evolution of Gases From the Pyrolysis of Raw and Torrefied Biomass and From the Oxy-Combustion of Their Bio-Chars
,”
ASME J. Energy Resour. Technol.
,
144
(
2
), p.
021901
.
47.
Yilgin
,
M.
,
Hos
,
B.
, and
Pehlivan
,
D.
,
2021
, “
Combustion of Torrefied Pellets of Furniture Work Dusts as Blends With Lignite
,”
ASME J. Energy Resour. Technol.
,
143
(
10
), p.
102301
.
48.
Kerdsuwan
,
S.
,
Laohalidanonf
,
K.
, and
Gupta
,
A. K.
,
2021
, “
Upgrading Refuse-Derived Fuel Properties From Reclaimed Landfill Using Torrefaction
,”
ASME J. Energy Resour. Technol.
,
143
(
2
), p.
021302
.
49.
Wu
,
J.
,
Cheng
,
F.
, and
Zhang
,
D.
,
2021
, “
Health Effect of Indoor PM2.5 and CO Emissions From Coal and Biomass Fired Domestic Appliances in Remote Rural China
,”
Int. J. Energy Clean Environ.
,
22
(
5
), pp.
33
49
.
50.
Laohalidanond
,
K.
, and
Kerdsuwan
,
S.
,
2021
, “
Green Energy Recovery From Waste in Thailand: Current Situation and Perspectives
,”
Int. J. Energy Clean Environ.
,
22
(
5
), pp.
103
122
.
You do not currently have access to this content.