Abstract

On the anode side of a direct-methanol fuel cell, carbon dioxide bubbles are generated as a result of the methanol oxidation reaction. The accumulation of such bubbles prevents methanol from reaching the diffusion layer (DL). Hence, a reduction in the reaction rate occurs, which limits the maximum current density of the cell. To keep carbon dioxide bubbles away from the diffusion layer surface, a new design of the anode flow channel besides wall surface treatment is developed. Such a design can introduce capillary actuation, which forces the carbon dioxide bubbles to move away from the diffusion layer due to capillary forces. This can be achieved by using a trapezoidal shape of the flow channel, as well as the combined effect of hydrophilic and hydrophobic surface treatments on the diffusion layer and top wall, respectively. To identify the optimal design of the anode flow channel, a three-dimensional, two-phase flow model is developed. The model is numerically simulated, and the results are validated with available measurements. Results indicated that treating the diffusion layer with a hydrophilic layer increases the area in direct contact with liquid methanol. Besides, the hydrophobic top channel wall makes it easier for the carbon dioxide bubbles to attach and spread out on the top surface. However, super-hydrophobic treatment of the top wall should be avoided, as it can cause difficulty in bubble extraction from the channel. The current findings create a promising opportunity to improve the performance of direct-methanol fuel cells.

References

1.
Boettner
,
D. D.
,
Paganelli
,
G.
,
Guezennec
,
Y. G.
,
Rizzoni
,
G.
, and
Moran
,
M. J.
,
2002
, “
Proton Exchange Membrane Fuel Cell System Model for Automotive Vehicle Simulation and Control
,”
ASME J. Energy Resour. Technol.
,
124
(
1
), pp.
20
27
.
2.
Ahmed
,
M.
, and
Dincer
,
I.
,
2011
, “
A Review on Methanol Crossover in Direct Methanol Fuel Cells: Challenges and Achievements
,”
Int. J. Energy Res.
,
35
(
14
), pp.
1213
1228
.
3.
El-Zoheiry
,
R. M.
,
Ookawara
,
S.
, and
Ahmed
,
M.
,
2017
, “
Efficient Fuel Utilization by Enhancing the Under-Rib Mass Transport Using New Serpentine Flow Field Designs of Direct Methanol Fuel Cells
,”
Energy Convers. Manag.
,
144
, pp.
88
103
.
4.
El-Zoheiry
,
R. M.
,
Mori
,
S.
, and
Ahmed
,
M.
,
2019
, “
Using Multi-path Spiral Flow Fields to Enhance Under-Rib Mass Transport in Direct Methanol Fuel Cells
,”
Int. J. Hydrogen Energy
,
44
(
58
), pp.
30663
30681
.
5.
Wong
,
C. W.
,
Zhao
,
T. S.
,
Ye
,
Q.
, and
Liu
,
J. G.
,
2005
, “
Transient Capillary Blocking in the Flow Field of a Micro-DMFC and Its Effect on Cell Performance
,”
J. Electrochem. Soc.
,
152
(
8
), pp.
1600
1605
.
6.
Liao
,
Q.
,
Zhu
,
X.
,
Zheng
,
X.
, and
Ding
,
Y.
,
2007
, “
Visualization Study on the Dynamics of CO2 Bubbles in Anode Channels and Performance of a DMFC
,”
J. Power Sources
,
171
(
2
), pp.
644
651
.
7.
Lu
,
G. Q.
, and
Wang
,
C. Y.
,
2004
, “
Electrochemical and Flow Characterization of a Direct Methanol Fuel Cell
,”
J. Power Sources
,
134
(
1
), pp.
33
40
.
8.
Yeh
,
H. C.
,
Yang
,
R. J.
,
Luo
,
W. J.
,
Jiang
,
J. Y.
,
Kuan
,
Y. D.
, and
Lin
,
X. Q.
,
2011
, “
The Performance Analysis of Direct Methanol Fuel Cells With Different Hydrophobic Anode Channels
,”
J. Power Sources
,
196
(
1
), pp.
270
278
.
9.
Liang
,
J.
,
Liu
,
K.
,
Li
,
S.
,
Wang
,
D.
,
Ren
,
T.
,
Xu
,
X.
, and
Luo
,
Y.
,
2015
, “
Novel Flow Field With Superhydrophobic Gas Channels Prepared by One-Step Solvent-Induced Crystallization for Micro Direct Methanol Fuel Cell
,”
Nano-Micro Lett.
,
7
(
2
), pp.
165
171
.
10.
Liang
,
J.
,
Luo
,
Y.
,
Zheng
,
S.
, and
Wang
,
D.
,
2017
, “
Enhance Performance of Micro Direct Methanol Fuel Cell by in Situ CO 2 Removal Using Novel Anode Flow Field With Superhydrophobic Degassing Channels
,”
J. Power Sources
,
351
, pp.
86
95
.
11.
Hutzenlaub
,
T.
,
Paust
,
N.
,
Zengerle
,
R.
, and
Ziegler
,
C.
,
2011
, “
The Effect of Wetting Properties on Bubble Dynamics and Fuel Distribution in the Flow Field of Direct Methanol Fuel Cells
,”
J. Power Sources
,
196
(
19
), pp.
8048
8056
.
12.
Burgmann
,
S.
,
Blank
,
M.
,
Panchenko
,
O.
, and
Wartmann
,
J.
,
2013
, “
μPIV Measurements of two-Phase Flows of an Operated Direct Methanol Fuel Cell
,”
Exp. Fluids
,
54
(
5
), p.
5
.
13.
Metz
,
T.
,
Paust
,
N.
,
Müller
,
C.
,
Zengerle
,
R.
, and
Koltay
,
P.
,
2008
, “
Passive Water Removal in Fuel Cells by Capillary Droplet Actuation
,”
Sens. Actuators, A
,
143
(
1
), pp.
49
57
.
14.
El-Dosoky
,
M.
,
Ahmed
,
M.
, and
Ashgriz
,
N.
,
2018
, “
Numerical Simulation of Condensate Removal From Gas Channels of PEM Fuel Cells Using Corrugated Walls
,”
Int. J. Energy Res.
,
42
(
4
), pp.
1664
1676
.
15.
Kablou
,
Y.
,
Matida
,
E.
, and
Cruickshank
,
C.
,
2019
, “
Two-Phase Flow Modeling of Direct Methanol Fuel Cell Anode Compartment
,”
Fuel Cells
,
19
(
5
), pp.
594
608
.
16.
Triplett
,
K. A.
,
Ghiaasiaan
,
S. M.
,
Abdel-Khalik
,
S. I.
, and
Sadowski
,
D. L.
,
1999
, “
Gas-Liquid Two-Phase Flow in Microchannels Part I: Two-Phase Flow Patterns
,”
Int. J. Multiph. Flow
,
25
(
3
), pp.
377
394
.
17.
Su
,
X.
,
Yuan
,
W.
,
Lu
,
B.
,
Zheng
,
T.
,
Ke
,
Y.
,
Zhuang
,
Z.
,
Zhao
,
Y.
,
Tang
,
Y.
, and
Zhang
,
S.
,
2020
, “
CO2 Bubble Behaviors and Two-Phase Flow Characteristics in Single-Serpentine Sinusoidal Corrugated Channels of Direct Methanol Fuel Cell
,”
J. Power Sources
,
450
(
29
), pp.
227
621
.
18.
Finn
,
R.
,
1986
,
Equilibrium Capillary Surfaces
,
Springer-Verlag New York Inc.
,
New York
, p.
284
.
19.
Gopalan
,
P.
,
2013
, “
Investigation of Water Droplet Dynamics in PEM Cell Gas Channels
,”
Ph.D thesis
,
Rochester Institute of Technology
,
Rochester, New York
.
20.
Šikalo
,
Š
,
Wilhelm
,
H. D.
,
Roisman
,
I. V.
,
Jakirlić
,
S.
, and
Tropea
,
C.
,
2005
, “
Dynamic Contact Angle of Spreading Droplets: Experiments and Simulations
,”
Phys. Fluids
,
17
(
6
), pp.
1
13
.
21.
Liu
,
H.
, and
Zhang
,
J.
,
2009
,
Electrocatalysis of Direct Methanol Fuel Cells: From Fundamentals to Applications
,
Wiley-VCH
,
Weinheim, Germany
.
22.
Kurtuldu
,
F.
, and
Altuncu
,
E.
,
2016
, “
Surface Wettability Properties of 304 Stainless Steel Treated by Atmospheric- Pressure Plasma System
,”
4th International Symposium on Innovative Technologies in Engineering and Science
,
Antalya—Turkey
,
September
.
23.
Kozbial
,
A.
,
Li
,
Z.
,
Sun
,
J.
,
Gong
,
X.
,
Zhou
,
F.
,
Wang
,
Y.
,
Xu
,
H.
,
Liu
,
H.
, and
Li
,
L.
,
2014
, “
Understanding the Intrinsic Water Wettability of Graphite
,”
Carbon
,
74
, pp.
218
225
.
24.
Arifvianto
,
B.
,
Mahardika
,
S.
, and
Mahardika
,
M.
,
2018
, “
Surface Morphology, Roughness and Wettability of the Medical Grade 316L Stainless Steel Processed With Surface Mechanical Attrition Treatment and Electropolishing for the Preparation of Osteosynthesis Plate
,”
J. Phys. Sci.
,
29
(
3
), pp.
83
94
.
25.
Gauthier
,
E.
, and
Benziger
,
J. B.
,
2014
, “
Gas Management and Multiphase Flow in Direct Alcohol Fuel Cells
,”
Electrochim. Acta
,
128
, pp.
238
247
.
26.
Langbein
,
D.
,
2002
,
Capillary Surfaces: Shape, Stability, Dynamics, in Particular Under Weightlessness
,
Springer-Verlag Berlin/Heidelberg
,
Germany
.
27.
COMSOL
,
2018
,
Microfluidics Module User's Guide, COMSOL Inc., Burlington, MA
.
28.
Bracke
,
M.
,
Voeght
,
F.
, and
Joos
,
P.
,
1989
, “
The Kinetics of Wetting: the Dynamic Contact Angle
,”
Trends in Colloid and Interface Science III
,
Darmstadt, Germany
.
29.
Cox
,
R. G.
,
1986
, “
The Dynamics of the Spreading of Liquids on a Solid Surface. Part 1. Viscous Flow
,”
J. Fluid Mech.
,
168
, pp.
169
194
.
30.
Hoffman
,
R. L.
,
1975
, “
A Study of the Advancing Interface. I. Interface Shape in Liquid-Gas Systems
,”
J. Colloid Interface Sci.
,
50
(
2
), pp.
228
241
.
31.
Jiang
,
T. S.
,
Soo-Gun
,
O. H.
, and
Slattery
,
J. C.
,
1979
, “
Correlation for Dynamic Contact Angle
,”
J. Colloid Interface Sci.
,
69
(
1
), pp.
74
77
.
You do not currently have access to this content.