Abstract

The updraft plasma gasification process of different municipal solid wastes (MSWs) to produce syngas as a substitute gaseous fuel was assessed from a techno-economic viewpoint. The plasma gasification process was modeled under a thermo-chemical approach using aspen plus. The model validation has been carried out with experimental data from the literature, reaching an average relative error of 6.23% for temperature, heating values, and fuel species concentration of the syngas. The plasma torch power consumption was one of the main process parameters that affects the energy and exergy efficiencies. In spite of increasing moisture content of MSW, from 26.61% to 57.9%, the energy and exergy efficiencies expanded by 1.5% and 5.4% on average, respectively, which ascribed to the reduction of torch power consumption; this behavior resulted as the torches thermally degraded a lower fraction of dry MSW. Whereas, if plasma temperature increased (2500 °C to 4000 °C), the gasification efficiencies diminished because of the torch power consumption boosted by 28.3%. Furthermore, the parameter combinations process (air flow and plasma temperature) was found to reach the highest process efficiency, the efficiency ranged from 79.22% to 83.46%, highlighting the plasma gasification flexibility. The levelized cost of syngas production varied from 15.83 to 26.21 ¢US$/kW h. Therefore, to make these projects feasible (waste to energy), a waste disposal charge ranging between 14.67 and 26.82 ¢US$/kW h was proposed.

References

1.
Ouda
,
O. K. M.
,
Raza
,
S. A.
,
Nizami
,
A. S.
,
Rehan
,
M.
,
Al-Waked
,
R.
, and
Korres
,
N. E.
,
2016
, “
Waste to Energy Potential: A Case Study of Saudi Arabia
,”
Renew. Sustain. Energy Rev.
,
61
, pp.
328
340
. 10.1016/j.rser.2016.04.005
2.
Fazeli
,
A.
,
Bakhtvar
,
F.
,
Jahanshaloo
,
L.
,
Che Sidik
,
N. A.
, and
Bayat
,
A. E.
,
2016
, “
Malaysia’s Stand on Municipal Solid Waste Conversion to Energy: A Review
,”
Renew. Sustain. Energy Rev.
,
58
, pp.
1007
1016
. 10.1016/j.rser.2015.12.270
3.
Couto
,
N. D.
,
Silva
,
V. B.
, and
Rouboa
,
A.
,
2016
, “
Thermodynamic Evaluation of Portuguese Municipal Solid Waste Gasification
,”
J. Clean. Prod.
,
139
, pp.
622
635
. 10.1016/j.jclepro.2016.08.082
4.
Larochelle
,
L.
,
Turner
,
M.
, and
LaGiglia
,
M.
,
2012
, “
Evaluation of NAMA Opportunities in Colombia’s Solid Waste Sector
,”
Center for Clean Air Policy
, p.
162
.
5.
Superintendencia de Servicios Públicos Domiciliarios
,
2017
,
Informe de Disposición Final de Residuos Sólidos—2017
,
Superintendencia de Servicios Públicos Domiciliarios
,
Bogotá
.
6.
Consejo Nacional de Política Económica y Social
,
2016
,
Documento Conpes 3874: Política Nacional Para La Gestión Integral de Residuos Sólidos
,
Consejo Nacional de Política Económica y Social
,
Bogotá
.
7.
Zuo
,
J.
,
Yan
,
Y.
,
Chen
,
G.
,
Yin
,
P.
,
Wang
,
Y.
, and
Yan
,
B.
,
2015
, “
Effectiveness of Waste-to-Energy Approaches in China: From the Perspective of Greenhouse Gas Emission Reduction
,”
J. Clean. Prod.
,
163
, pp.
99
105
. 10.1016/j.jclepro.2015.09.060
8.
Cucchiella
,
F.
,
D’Adamo
,
I.
, and
Gastaldi
,
M.
,
2017
, “
Sustainable Waste Management: Waste to Energy Plant as an Alternative to Landfill
,”
Energy Convers. Manage.
,
131
, pp.
18
31
. 10.1016/j.enconman.2016.11.012
9.
Zaman
,
A. U.
,
2010
, “
Comparative Study of Municipal Solid Waste Treatment Technologies Using Life Cycle Assessment Method
,”
Int. J. Environ. Sci. Technol.
,
7
(
2
), pp.
225
234
. 10.1007/BF03326132
10.
Alzate-Arias
,
S.
,
Jaramillo-Duque
,
Á.
,
Villada
,
F.
, and
Restrepo-Cuestas
,
B.
,
2018
, “
Assessment of Government Incentives for Energy From Waste in Colombia
,”
Sustainability
,
10
(
4
), pp.
1
16
. 10.3390/su10041294
11.
Nordi
,
G. H.
,
Palacios-Bereche
,
R.
,
Gallego
,
A. G.
, and
Nebra
,
S. A.
,
2017
, “
Electricity Production From Municipal Solid Waste in Brazil
,”
Waste Manage. Res.
,
35
(
7
), pp.
709
720
. 10.1177/0734242X17705721
12.
Kumar
,
A.
, and
Samadder
,
S. R. R.
,
2017
, “
A Review on Technological Options of Waste to Energy for Effective Management of Municipal Solid Waste
,”
Waste Manage.
,
69
, pp.
407
422
. 10.1016/j.wasman.2017.08.046
13.
Castaldi
,
M.
,
van Deventer
,
J.
,
Lavoie
,
J. M.
,
Legrand
,
J.
,
Nzihou
,
A.
,
Pontikes
,
Y.
,
Py
,
X.
,
Vandecasteele
,
C.
,
Vasudevan
,
P. T.
, and
Verstraete
,
W.
,
2017
, “
Progress and Prospects in the Field of Biomass and Waste to Energy and Added-Value Materials
,”
Waste Biomass Valori.
,
8
(
6
), pp.
1875
1884
. 10.1007/s12649-017-0049-0
14.
Medina Jimenez
,
A. C.
,
Nordi
,
G. H.
,
Palacios Bereche
,
M. C.
,
Bereche
,
R. P.
,
Gallego
,
A. G.
, and
Nebra
,
S. A.
,
2017
, “
Evaluation of Two Different Alternatives of Energy Recovery From Municipal Solid Waste in Brazil
,”
Waste Manage. Res.
,
35
(
11
), pp.
1137
1148
. 10.1177/0734242X17728123
15.
Minutillo
,
M.
,
Perna
,
A.
, and
Di Bona
,
D.
,
2009
, “
Modelling and Performance Analysis of an Integrated Plasma Gasification Combined Cycle (IPGCC) Power Plant
,”
Energy Convers. Manage.
,
50
(
11
), pp.
2837
2842
. 10.1016/j.enconman.2009.07.002
16.
Chumak
,
O.
,
Hlína
,
M.
,
Kopecky
,
V.
,
Mas
,
A.
,
Skoblja
,
S.
,
Oost
,
G. V.
,
Vierendeels
,
J.
,
Agon
,
N.
,
Hrabovský
,
M.
,
Chumak
,
O.
,
Hlína
,
M.
,
Kopecký
,
V.
,
Mašláni
,
A.
,
Bosmans
,
A.
,
Helsen
,
L.
,
Skoblja
,
S.
,
Van Oost
,
G.
, and
Vierendeels
,
J.
,
2016
, “
Plasma Gasification of Refuse Derived Fuel in a Single-Stage System Using Different Gasifying Agents
,”
Waste Manage.
,
47
, pp.
246
255
. 10.1016/j.wasman.2015.07.014
17.
Sanlisoy
,
A.
, and
Carpinlioglu
,
M. O.
,
2017
, “
A Review on Plasma Gasification for Solid Waste Disposal
,”
Int. J. Hydrogen Energy
,
42
(
2
), pp.
1361
1365
. 10.1016/j.ijhydene.2016.06.008
18.
Indrawan
,
N.
,
Mohammad
,
S.
,
Kumar
,
A.
, and
Huhnke
,
R. L.
,
2019
, “
Modeling Low Temperature Plasma Gasification of Municipal Solid Waste
,”
Environ. Technol. Innov.
,
15
, pp.
1
12
. 10.1016/j.eti.2019.100412
19.
Galeno
,
G.
,
Minutillo
,
M.
, and
Perna
,
A.
,
2011
, “
From Waste to Electricity Through Integrated Plasma Gasification/Fuel Cell (IPGFC) System
,”
Int. J. Hydrogen Energy
,
36
(
2
), pp.
1692
1701
. 10.1016/j.ijhydene.2010.11.008
20.
Janajreh
,
I.
,
Raza
,
S. S.
, and
Valmundsson
,
A. S.
,
2013
, “
Plasma Gasification Process: Modeling, Simulation and Comparison With Conventional Air Gasification
,”
Energy Convers. Manage.
,
65
, pp.
801
809
. 10.1016/j.enconman.2012.03.010
21.
Mazzoni
,
L.
, and
Janajreh
,
I.
,
2017
, “
Plasma Gasification of Municipal Solid Waste With Variable Content of Plastic Solid Waste for Enhanced Energy Recovery
,”
Int. J. Hydrogen Energy
,
42
(
30
), pp.
19446
19457
. 10.1016/j.ijhydene.2017.06.069
22.
Khuriati
,
A.
,
Budi
,
W. S.
,
Nur
,
M.
,
Istadi
,
I.
, and
Suwoto
,
G.
,
2017
, “
Modeling of Heating Value of Municipal Solid Waste Based on Ultimate Analysis Using Multiple Stepwise Regresion Linear in Semarang
,”
12
(
9
), pp.
2870
2876
.
23.
Zhang
,
Q.
,
Wu
,
Y.
,
Dor
,
L.
,
Yang
,
W.
, and
Blasiak
,
W.
,
2013
, “
A Thermodynamic Analysis of Solid Waste Gasification in the Plasma Gasification Melting Process
,”
Appl. Energy
,
112
, pp.
405
413
. 10.1016/j.apenergy.2013.03.054
24.
Favas
,
J.
,
Monteiro
,
E.
, and
Rouboa
,
A.
,
2017
, “
Hydrogen Production Using Plasma Gasification With Steam Injection
,”
Int. J. Hydrogen Energy
,
42
(
16
), pp.
10997
11005
. 10.1016/j.ijhydene.2017.03.109
25.
Galvita
,
V.
,
Messerle
,
V. E.
, and
Ustimenko
,
A. B.
,
2007
, “
Hydrogen Production by Coal Plasma Gasification for Fuel Cell Technology
,”
32
, pp.
3899
3906
. 10.1016/j.ijhydene.2007.05.039
26.
Clark
,
B. J.
, and
Rogoff
,
M. J.
,
2010
, “
Economic Feasibility of a Plasma Arc Gasification Plant, City of Marion, Iowa
,”
18th Annual North American Waste-to-Energy Conference
,
Orlando, FL
,
May 11–13
.
27.
Byun
,
Y.
,
Cho
,
M.
,
Woo
,
J.
,
Namkung
,
W.
,
Don
,
H.
,
Duk
,
S.
,
Kim
,
Y.
,
Lee
,
J.
,
Lee
,
C.
, and
Hwang
,
S.
,
2011
, “
Hydrogen Recovery From the Thermal Plasma Gasification of Solid Waste
,”
J. Hazard. Mater.
,
190
(
1–3
), pp.
317
323
. 10.1016/j.jhazmat.2011.03.052
28.
Zang
,
G.
,
Jia
,
J.
,
Shi
,
Y.
,
Sharma
,
T.
, and
Ratner
,
A.
,
2019
, “
Modeling and Economic Analysis of Waste Tire Gasification in Fluidized and Fixed Bed Gasifiers
,”
Waste Manage.
,
89
(
1
), pp.
201
211
. 10.1016/j.wasman.2019.03.070
29.
Secretaria de gestión y control territorial, and Universidad de Medellín
,
2015
,
Plan de Gestión Integral de Residuos Sólidos Del Municipio de Medellín. Documento de Actualización—Parte 1
,
Secretaria de gestión y control territorial, and Universidad de Medellín
,
Medellín
.
30.
Velez
,
S. L. P.
, and
Mora
,
N. E.
,
2016
, “
System Dynamics Model for the Municipal Solid Waste Management System in the Metropolitan Area of Medellín, Colombia
,”
Int. J. Environ. Waste Manage.
,
18
(
2
), p.
161
. 10.1504/IJEWM.2016.080404
31.
Lozano
,
A. M.
,
Lora
,
E. E. S.
,
Palacio
,
J. C. E.
,
Rocha
,
M. H.
,
Restrepo
,
J. C.
,
Venturini
,
O. J.
, and
Ratner
,
A.
,
2017
, “
Refuse Derived Fuel (RDF) Production and Gasification in a Pilot Plant Integrated With an Otto Cycle ICE Through Aspen PlusTM Modelling: Thermodynamic and Economic Viability
,”
Waste Manage.
,
69
, pp.
187
201
. 10.1016/j.wasman.2017.08.006
32.
Zhou
,
H.
,
Meng
,
A.
,
Long
,
Y.
,
Li
,
Q.
, and
Zhang
,
Y.
,
2014
, “
Classification and Comparison of Municipal Solid Waste Based on Thermochemical Characteristics
,”
J. Air Waste Manage. Assoc.
,
64
(
5
), pp.
597
616
. 10.1080/10962247.2013.873094
33.
Grupo de Extensión GEAR-Universidad de Medellín
,
2011
,
Estudio de Producción y Caracterización de Residuos Sólidos Generados En El Sector Residencia y Por Estrato Socieconímico de La Ciudad de Medellín y Sus Cinco Corregimientos
,
Grupo de Extensión GEAR-Universidad de Medellín
,
Medellín
.
34.
Grupo de Extensión GEAR- Universidad de Medellín
,
2012
,
Estudio de Producción y Caracterización de Residuos Sólidos Generados En El Sector No Residencial de La Ciudad de Medellín y Sus Cinco Corregimientos
,
Grupo de Extensión GEAR- Universidad de Medellín
,
Medellín
.
35.
Balcazar
,
J. G. C.
,
Dias
,
R. A.
, and
Balestieri
,
J. A. P.
,
2013
, “
Analysis of Hybrid Waste-to-Energy for Medium-Sized Cities
,”
Energy
,
55
, pp.
728
741
. 10.1016/j.energy.2013.02.003
36.
Montiel-Bohórquez
,
N. D.
, and
Pérez
,
J. F.
,
2019
, “
Generación de Energía a Partir de Residuos Sólidos Urbanos. Estrategias Termodinámicas Para Optimizar El Desempeño de Centrales Térmicas
,”
Inf. Tecnológica
,
30
(
1
), pp.
273
284
. 10.4067/S0718-07642019000100273
37.
Barrera
,
R.
,
Salazar
,
C.
, and
Pérez
,
J. F.
,
2014
, “
Thermochemical Equilibrium Model of Synthetic Natural Gas Production From Coal Gasification Using Aspen Plus
,”
Int. J. Chem. Eng.
,
2014
, pp.
1
18
. 10.1155/2014/192057
38.
Tavares
,
R.
,
Ramos
,
A.
, and
Rouboa
,
A.
,
2019
, “
A Theoretical Study on Municipal Solid Waste Plasma Gasification
,”
Waste Manage.
,
90
, pp.
37
45
. 10.1016/j.wasman.2019.03.051
39.
Perna
,
A.
,
Minutillo
,
M.
, and
Jannelli
,
E.
,
2016
, “
Hydrogen From Intermittent Renewable Energy Sources as Gasification Medium in Integrated Waste Gasification Combined Cycle Power Plants: A Performance Comparison
,”
Energy
,
94
, pp.
457
465
. 10.1016/j.energy.2015.10.143
40.
Gagliano
,
A.
,
Nocera
,
F.
,
Bruno
,
M.
, and
Cardillo
,
G.
,
2017
, “
Development of an Equilibrium-Based Model of Gasification of Biomass by Aspen Plus
,”
Energy Procedia
,
111
, pp.
1010
1019
. 10.1016/j.egypro.2017.03.264
41.
Indrawan
,
N.
,
Mohammad
,
S.
,
Kumar
,
A.
, and
Huhnke
,
R. L.
,
2019
, “
Modeling Low Temperature Plasma Gasification of Municipal Solid Waste
,”
Environ. Technol. Innov.
,
15
, p.
100412
. 10.1016/j.eti.2019.100412
42.
Mazzoni
,
L.
,
Ahmed
,
R.
, and
Janajreh
,
I.
,
2017
, “
Plasma Gasification of Two Waste Streams: Municipal Solid Waste and Hazardous Waste From the Oil and Gas Industry
,”
Energy Procedia
,
105
, pp.
4159
4166
. 10.1016/j.egypro.2017.03.882
43.
Perna
,
A.
,
Minutillo
,
M.
,
Lubrano
,
A.
, and
Jannelli
,
E.
,
2018
, “
Combining Plasma Gasification and Solid Oxide Cell Technologies in Advanced Power Plants for Waste to Energy and Electric Energy Storage Applications
,”
Waste Manage.
,
73
, pp.
424
438
. 10.1016/j.wasman.2017.09.022
44.
Çengel
,
Y. A.
,
2008
,
Thermodynamics : An Engineering Approach
, 6th ed.,
McGraw-Hill Higher Education
,
Boston, MA
.
45.
Ozdinc Carpinlioglu
,
M.
, and
Sanlisoy
,
A.
,
2018
, “
Performance Assessment of Plasma Gasification for Waste to Energy Conversion: A Methodology for Thermodynamic Analysis
,”
Int. J. Hydrogen Energy
,
43
(
25
), pp.
11493
11504
. 10.1016/j.ijhydene.2017.08.147
46.
Channiwala
,
S. A.
, and
Parikh
,
P. P.
,
2002
, “
A Unified Correlation for Estimating HHV of Solid, Liquid and Gaseous Fuels
,”
Fuel
,
81
(
8
), pp.
1051
1063
. 10.1016/S0016-2361(01)00131-4
47.
Westinghouse Plasma Corporation
,
2014
, “
Plasma Torch Ratings
,”
Westinghouse Plasma Torch Systems
, WWW.WESTINGHOUSE-PLASMA.COM
48.
Kalinci
,
Y.
,
Hepbasli
,
A.
, and
Dincer
,
I.
,
2011
, “
Exergoeconomic Analysis of Hydrogen Production From Plasma Gasification of Sewage Sludge Using Specific Exergy Cost Method
,”
Int. J. Hydrogen Energy
,
36
(
17
), pp.
11408
11417
. 10.1016/j.ijhydene.2010.11.124
49.
Kotas
,
T. J.
,
1985
,
The Exergy Method of Thermal Plant Analysis
,
T. J.
Kotas
, ed.,
Butterworth-Heinemann
,
London
, pp.
29
56
.
50.
Ribert
,
T.
, and
Sylvain
,
A.
,
2014
, “One Stage Atmospheric Pressure Thermo-Catalytic Plasma Gasification and Vitrification of Organic Material Such as Biomass for the Production of the Renewable Energy,”
Solena Fuels Corporation
,
World Intellectual Property Organization
,
Washington, DC
.
51.
Estrada
,
C. A.
,
Melgar
,
A.
, and
Pérez
,
J. F.
,
2019
, “
Performance Prediction of a Decentralized Power Plant (120 KWe) Using a Multi-Particle Model of a Downdraft Biomass Gasification Process
,”
Energy Convers. Manage.
,
181
, pp.
258
271
. 10.1016/j.enconman.2018.12.002
52.
Willis
,
K. P.
,
Osada
,
S.
, and
Willerton
,
K. L.
,
2010
, “
Plasma Gasification: Lessons Learned at Ecovalley WTE Facility
,”
18th Annual North American Waste-to-Energy Conference (NAWTEC18)
,
Orlando, FL
,
May 11–13
.
53.
Mountouris
,
A.
,
Voutsas
,
E.
, and
Tassios
,
D.
,
2006
, “
Solid Waste Plasma Gasification : Equilibrium Model Development and Exergy Analysis
,”
Energy Conversion and Management
,
47
(
13–14
), pp.
1723
1737
. 10.1016/j.enconman.2005.10.015
54.
Bruck
,
M.
,
Sandborn
,
P.
, and
Goudarzi
,
N.
,
2018
, “
A Levelized Cost of Energy (LCOE) Model for Wind Farms That Include Power Purchase Agreements (PPAs)
,”
Renew. Energy
,
122
, pp.
131
139
. 10.1016/j.renene.2017.12.100
55.
Castillo-Ramírez
,
A.
,
Mejía-Giraldo
,
D.
, and
Giraldo-Ocampo
,
J. D.
,
2015
, “
Geospatial Levelized Cost of Energy in Colombia: GeoLCOE
,”
2015 IEEE PES Innovative Smart Grid Technologies Latin America ISGT LATAM 2015
,
Montevideo, Uruguay
,
Oct. 5–7
.
56.
Saldarriaga-Loaiza
,
J. D.
,
Villada
,
F.
, and
Pérez
,
J. F.
,
2019
, “
Análisis de Costos Nivelados de Electricidad de Plantas de Cogeneración Usando Biomasa Forestal En El Departamento de Antioquia, Colombia
,”
Inf. Tecnológica
,
30
(
1
), pp.
63
74
. 10.4067/S0718-07642019000100063
57.
DANE
,
2020
, Estadísticas Por Tema—Información Para Todos” [Online]. https://www.dane.gov.co/index.php/estadisticas-por-tema
58.
Song
,
X.
, and
Guo
,
Z.
,
2007
, “
Production of Synthesis Gas by Co-Gasifying Coke and Natural Gas in a Fixed Bed Reactor
,”
Energy
,
32
(
10
), pp.
1972
1978
. 10.1016/j.energy.2007.04.002
59.
Díez
,
H. E.
,
Gómez
,
I. N.
, and
Pérez
,
J. F.
,
2018
, “
Mass, Energy, and Exergy Analysis of the Microgasification Process in a Top-Lit Updraft Reactor: Effects of Firewood Type and Forced Primary Airflow
,”
Sustain. Energy Technol. Assess.
,
29
, pp.
82
91
. 10.1016/j.seta.2018.07.003
60.
Paulino
,
R. F. S.
,
Essiptchouk
,
A. M.
, and
Silveira
,
J. L.
,
2020
, “
The Use of Syngas From Biomedical Waste Plasma Gasification Systems for Electricity Production in Internal Combustion: Thermodynamic and Economic Issues
,”
Energy
,
199
, p.
117419
. 10.1016/j.energy.2020.117419
61.
Collodi
,
G.
,
Azzaro
,
G.
,
Ferrari
,
N.
, and
Santos
,
S.
,
2017
, “
Demonstrating Large Scale Industrial CCS Through CCU—A Case Study for Methanol Production
,”
Energy Procedia
,
114
, pp.
122
138
. 10.1016/j.egypro.2017.03.1155
62.
Ducharme
,
C.
,
2010
,
Technical and Economic Analysis of Plasma-Assisted Waste-to-Energy Processes
,
Columbia University
,
New York
.
63.
Byun
,
Y.
,
Cho
,
M.
,
Hwang
,
S.
, and
Chung
,
J.
,
2012
, “Thermal Plasma Gasification of Municipal Solid Waste,”
Gasification for Practical Applications
,
Y.
Yun
, ed.,
InTech
,
Rijeka
, pp.
183
210
.
64.
Medina Jimenez
,
A. C.
,
Bereche
,
R. P.
, and
Nebra
,
S.
,
2019
, “
Three Municipal Solid Waste Gasification Technologies Analysis for Electrical Energy Generation in Brazil
,”
Waste Manage. Res.
,
37
(
6
), pp.
631
642
. 10.1177/0734242X19841126
65.
Rajendran
,
K.
,
Kankanala
,
H. R.
,
Martinsson
,
R.
, and
Taherzadeh
,
M. J.
,
2014
, “
Uncertainty Over Techno-Economic Potentials of Biogas From Municipal Solid Waste (MSW): A Case Study on an Industrial Process
,”
Appl. Energy
,
125
, pp.
84
92
. 10.1016/j.apenergy.2014.03.041
66.
U.S. Energy Information Administration (EIA)
,
2020
, “
Natural Gas Weekly Update
,” https://www.eia.gov/naturalgas/weekly/
You do not currently have access to this content.