Abstract

Optimum well spacing is an essential element for the economic development of shale gas reservoirs. We present an integrated assisted history matching (AHM) and embedded discrete fracture model (EDFM) workflow for well spacing optimization by considering multiple uncertainty realizations and economic analysis. This workflow is applied in shale gas reservoirs of the Sichuan Basin in China. First, we applied the AHM to calibrate ten matrices and fracture uncertain parameters using a real shale gas well, including matrix permeability, matrix porosity, three relative permeability parameters, fracture height, fracture half-length, fracture width, fracture conductivity, and fracture water saturation. There are 71 history matching solutions obtained to quantify their posterior distributions. Integrating these uncertainty realizations with five-well spacing scenarios, which are 517 ft, 620 ft, 775 ft, 1030 ft, and 1550 ft, we generated 355 cases to perform production simulations using the EDFM method coupled with a reservoir simulator. Then, P10, P50, and P90 values of gas estimated ultimate recovery (EUR) for different well spacing scenarios were determined. In addition, the degradation of EUR with and without well interference was analyzed. Next, we calculated the NPVs of all simulation cases and trained the K-nearest neighbors (KNN) proxy, which describes the relationship between the net pressure value (NPV) and all uncertain matrix and fracture parameters and varying well spacing. After that, the KNN proxy was used to maximize the NPV under the current operation cost and natural gas price. Finally, the maximum NPV of 3 million USD with well spacing of 766 ft was determined.

References

1.
Osholake
,
T.
,
Yilin Wang
,
J.
, and
Ertekin
,
T.
,
2013
, “
Factors Affecting Hydraulically Fractured Well Performance in the Marcellus Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
135
(
1
), p.
013402
.
2.
Seales
,
M.
,
Ertekin
,
T.
, and
Wang
,
J.
,
2017
, “
Recovery Efficiency of Hydraulically Fractured Shale Gas Reservoirs
,”
ASME J. Energy Resour. Technol.
,
139
(
4
), p.
042901
.
3.
Teng
,
B.
,
Cheng
,
L.
,
Huang
,
S.
, and
Andy Li
,
H.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Fast Marching-Succession of Steady States Method
,”
ASME J. Energy Resour. Technol.
,
140
(
3
), p.
032913
.
4.
Sui
,
H.
,
Pei
,
P.
,
Su
,
Q.
,
Ding
,
W.
, and
Mao
,
R.
,
2020
, “
Study of Temperature Effects on Economic Performance of CO2 Enhanced Shale Gas Recovery
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
032903
.
5.
Li
,
W.
,
Jian
,
Z.
,
Chen
,
X.
, and
Chen
,
H.
,
2020
, “
New Calculation Method and Application of Gas Loss From Coring Shale Gas Well
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
103006
.
6.
Wang
,
J.
,
Gu
,
D.
,
Guo
,
W.
,
Zhang
,
H.
, and
Yang
,
D.
,
2019
, “
Determination of Total Organic Carbon Content in Shale Formations With Regression Analysis
,”
ASME. J. Energy Resour. Technol.
,
141
(
1
), p.
012907
.
7.
Prasun
,
S.
, and
Wojtanowicz
,
A. K.
,
2020
, “
Stabilized Water-Cut in Carbonate Naturally Fractured Reservoirs With Bottom Water With an Implication in Well Spacing Design for Recovery Optimization
,”
ASME J. Energy Resour. Technol.
,
142
(
3
), p.
033003
.
8.
Chen
,
T.
,
Salas-Porras
,
R.
,
Mao
,
D.
,
Jain
,
V.
,
Thomas
,
M. A.
,
Kruijs
,
E.
, and
Scholten
,
S. O.
,
2017
, “
Use of Interference Tests to Constrain the Spacing of Hydraulically Fractured Wells in Neuquen Shale Oil Reservoirs
,”
SPE Latin America and Caribbean Petroleum Engineering Conference
,
Buenos Aires, Argentina
,
May17–19
, SPE Paper No. SPE-185518-MS.
9.
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2018
,
Shale Gas and Tight Oil Reservoir Simulation
, 1st ed.,
Elsevier
,
Cambridge, MA
.
10.
Hongwei
,
C.
,
Qihong
,
F.
,
Xianmin
,
Z.
,
Sen
,
W.
,
Wensheng
,
Z.
, and
Fan
,
L.
,
2019
, “
Well Placement Optimization With Cat Swarm Optimization Algorithm Under Oilfield Development Constraints
,”
ASME J. Energy Resour. Technol.
,
141
(
1
), p.
012902
.
11.
An
,
C.
,
Zhang
,
P.
,
Wesley
,
A.
,
Bardy
,
G.
,
Hall
,
K.
, and
Erdogan
,
M.
,
2021
, “
A Novel Workflow for Optimizing Well Placement Under Geomechanical Constraints: A Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
3
), p.
033002
.
12.
Sahai
,
V.
,
Jackson
,
G.
,
Rai
,
R.
, and
Coble
,
L.
,
2012
, “
Optimal Well Spacing Configurations for Unconventional Gas Reservoir
,”
SPE Americas Unconventional Resources Conference
,
Pittsburgh, PA
,
June 5–7
, SPE Paper No. SPE-155751-MS.
13.
Lalehrokh
,
F.
, and
Bouma
,
J.
,
2014
, “
Well Spacing Optimization in Eagle Ford
,”
SPE/CSUR Unconventional Resources Conference—Canada
,
Calgary, AB, Canada
,
Sept. 30–Oct. 2
, SPE Paper No. SPE-171640-MS.
14.
Liang
,
B.
,
Du
,
M.
,
Goloway
,
C.
,
Hammond
,
R.
,
Yanez
,
P. P.
, and
Tran
,
T.
,
2017
, “
Subsurface Well Spacing Optimization in the Permian Basin
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Austin, TX
,
July 24–2
, SPE Paper No. URTEC-2671346-MS.
15.
Cao
,
R.
,
Chen
,
C.
,
Li
,
R.
,
Firincioglu
,
T.
,
Ozgen
,
C.
,
Croft
,
T.
, and
Chowdhury
,
N.
,
2018
, “
Integrated Stochastic Workflow for Optimum Well Spacing With Data Analytics, Pilots, Geomechanical-Reservoir Modeling, and Economic Analysis
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Houston, TX
,
July 23–25
, SPE Paper No, URTEC-2902138-MS.
16.
Shahkarami
,
A.
, and
Wang
,
G.
,
2017
, “
Horizontal Well Spacing and Hydraulic Fracturing Design Optimization: A Case Study on Utica-Point Pleasant Shale Play
,”
J. Sustainable Energy Eng.
,
5
(
2
), pp.
148
162
.
17.
Li
,
N.
,
Lolon
,
E.
,
Mayerhofer
,
M.
,
Cordts
,
Y.
,
White
,
R.
, and
Childers
,
A.
,
2017
, “
Optimizing Well Spacing and Well Performance in the Piceance Basin Niobrara Formation
,”
SPE Hydraulic Fracturing Technology Conference and Exhibition
,
The Woodlands, TX
,
Jan. 24–26
, SPE Paper No. SPE-184848-MS.
18.
Rafiee
,
M.
, and
Grover
,
T.
,
2017
, “
Well Spacing Optimization in Eagle Ford Shale: An Operator's Experience
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Austin, TX
,
July 24–26
, SPE Paper No. URTEC-2695433-MS.
19.
Zhu
,
J.
,
Forrest
,
J.
,
Xiong
,
H.
, and
Kianinejad
,
A.
,
2017
, “
Cluster Spacing and Well Spacing Optimization Using Multi-Well Simulation for the Lower Spraberry Shale in Midland Basin
,”
SPE Liquids-Rich Basins Conference—North America
,
Midland, TX
,
Sept. 13–14
, SPE Paper No. SPE-187485-MS.
20.
Bansal
,
N.
,
Han
,
J.
,
Shin
,
Y.
, and
Blasingame
,
T.
,
2018
, “
Reservoir Characterization to Understand Optimal Well Spacing—A Wolfcamp Case Study
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Houston, TX
,
July 23–25
, SPE Paper No. URTEC-2901322-MS.
21.
Belyadi
,
H.
, and
Smith
,
M.
,
2018
, “
A Fast-Paced Workflow for Well Spacing and Completions Design Optimization in Unconventional Reservoirs
,”
SPE/AAPG Eastern Regional Meeting
,
Pittsburgh, PA
,
Oct. 7–11
, Paper No. SPE-191779-18ERM-MS.
22.
Tripoppoom
,
S.
,
Yu
,
W.
,
Huang
,
H.
,
Sepehrnoori
,
K.
,
Song
,
W.
, and
Dachanuwattana
,
S.
,
2019
, “
A Practical and Efficient Iterative History Matching Workflow for Shale Gas Well Coupling Multiple Objective Functions, Multiple Proxy-Based MCMC and EDFM
,”
J. Pet. Sci. Eng.
,
176
, pp.
594
611
.
23.
Tripoppoom
,
S.
,
Ma
,
X.
,
Yong
,
R.
,
Wu
,
J.
,
Yu
,
W.
,
Sepehrnoori
,
K.
,
Miao
,
J.
, and
Li
,
N.
,
2020
, “
Assisted History Matching in Shale Gas Well Using Multiple-Proxy-Based Markov Chain Monte Carlo Algorithm: The Comparison of K-Nearest Neighbors and Neural Networks as Proxy Model
,”
Fuel
,
262
, p.
116563
.
24.
Xu
,
Y.
,
Yu
,
W.
,
Li
,
N.
,
Lolon
,
E.
, and
Sepehrnoori
,
K.
,
2018
, “
Modeling Well Performance in Piceance Basin Niobrara Formation Using Embedded Discrete Fracture Model
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Houston, TX
,
July 23–25
, Paper No. URTEC-2901327-MS.
25.
Tripoppoom
,
S.
,
Xie
,
J.
,
Yong
,
R.
,
Wu
,
J.
,
Yu
,
W.
,
Sepehrnoori
,
K.
,
Miao
,
J.
,
Chang
,
C.
, and
Li
,
N.
,
2020
, “
Investigation of Different Production Performances in Shale Gas Wells Using Assisted History Matching: Hydraulic Fractures and Reservoir Characterization From Production Data
,”
Fuel
,
267
, p.
117097
.
26.
Tripoppoom
,
S.
,
Yu
,
W.
,
Sepehrnoori
,
K.
, and
Miao
,
J.
,
2019b
, “
Application of Assisted History Matching Workflow to Shale Gas Well Using EDFM and Neural Network-Markov Chain Monte Carlo Algorithm
,”
Unconventional Resources Technology Conference
,
Denver, CO
,
July 22–24
, SPE Paper No. URTEC-2019-659-MS.
27.
Xu
,
Y.
,
2015
, “
Implementation and Application of the Embedded Discrete Fracture Model (EDFM) for Reservoir Simulation in Fractured Reservoirs
,”
M.S., thesis
,
The University of Texas at Austin
,
Austin, TX
.
28.
Xu
,
Y.
,
Cavalcante Filho
,
J. S. A.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2017
, “
Discrete-Fracture Modeling of Complex Hydraulic-Fracture Geometries in Reservoir Simulators
,”
SPE Reservoir Eval. Eng.
,
20
(
2
), pp.
403
422
.
29.
Xu
,
Y.
,
Yu
,
W.
, and
Sepehrnoori
,
K.
,
2017
, “
Modeling Dynamic Behaviors of Complex Fractures in Conventional Reservoir Simulators
,”
SPE/AAPG/SEG Unconventional Resources Technology Conference
,
Austin, TX
,
July 24–26
, SPE Paper No. URTEC-2670513-MS.
30.
Yu
,
W.
,
Wu
,
K.
,
Liu
,
M.
,
Sepehrnoori
,
K.
, and
Miao
,
J.
,
2018
, “
Production Forecasting for Shale Gas Reservoirs With Nanopores and Complex Fracture Geometries Using an Innovative Non-Intrusive EDFM Method
,”
SPE Annual Technical Conference and Exhibition
,
Dallas, TX
,
Sept. 24–26
, SPE Paper No. SPE-191666-MS.
You do not currently have access to this content.