Abstract

In the present communication, internal irreversibility at each component of a single-effect vapor absorption refrigeration system has been evaluated and presented. The irreversibility is induced owing to the pressure drop in the shell and tube and energy exchange between the working fluids. Each component of the system is considered to be a shell and tube-type energy exchanger with slight modifications depending upon the applications. Each energy exchanger is divided into three control volumes, namely, tube wall, shell, and tube for which both energy and exergy balances are applied to evaluate the exergy destruction rate (EDR). Moreover, the overall EDR in the energy exchanger is then estimated in the form of pumping work and energy exchange duty. This objective function is further simplified in the form of design parameters such as tube diameter, friction coefficient, number of tubes, number of baffles, and overall heat transfer coefficient for the energy exchanger. In addition to this, optimum generator temperature and minimum EDR of each component of the absorption system have been tabulated and presented. Results show that for a single tube, UA value in the system component ranges from 2.99 W/K to 48.9 W/K depending on the operating conditions and design parameters of the system. Also, the number of tube in the system components ranges from 1108 tubes to 24803 tubes and the number of baffles in the respective components ranges from 2 to 7.

References

1.
Colorado-Garrido
,
D.
,
2020
, “
Advanced Exergetic Analysis of a Double-Effect Series Flow Absorption Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104503
. 10.1115/1.4047082
2.
Garimella
,
S.
, and
Garimella
,
V. S.
,
1999
, “
Commercial Boiler Waste-Heat Utilization for Air Conditioning in Developing Countries
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
203
208
. 10.1115/1.2795983
3.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
(
7
), p.
072001
.10.1115/1.4042240
4.
Arshi Banu
,
P. S.
, and
Sudharsan
,
N. M.
,
2018
, “
Review of Water Based Vapour Absorption Cooling Systems Using Thermodynamic Analysis
,”
Renew. Sustain. Energy Rev.
,
82
, pp.
3750
3761
. 10.1016/j.rser.2017.10.092
5.
Malik
,
I. H.
, and
Altamush Siddiqui
,
M.
,
1997
, “
Economic Feasibility and Performance Study of a Solar-Powered Absorption Cycle Using Some Aqueous Salt Solutions
,”
ASME J. Sol. Energy Eng.
,
119
(
1
), pp.
31
34
. 10.1115/1.2871816
6.
Sun
,
J.
,
Fu
,
L.
, and
Zhang
,
S.
,
2012
, “
A Review of Working Fluids of Absorption Cycles
,”
Renew. Sustain. Energy Rev.
,
16
(
4
), pp.
1899
1906
. 10.1016/j.rser.2012.01.011
7.
Tareq Chowdhury
,
M.
, and
Mokheimer
,
E. M. A.
,
2020
, “
Recent Developments in Solar and Low-Temperature Heat Sources Assisted Power and Cooling Systems: A Design Perspective
,”
ASME J. Energy Resour. Technol.
,
142
(
4
), p.
040801
.10.1115/1.4044562
8.
Kurem
,
E.
, and
Horuz
,
I.
,
2001
, “
A Comparison Between Ammonia-Water and Water-Lithium Bromide Solutions in Absorption Heat Transformers
,”
Int. Commun. Heat Mass Transf.
,
28
(
3
), pp.
427
438
. 10.1016/S0735-1933(01)00247-0
9.
Garimella
,
S.
,
1997
, “
Absorption Heat Pump Performance Improvement Through Ground Coupling
,”
ASME J. Energy Resour. Technol.
,
119
(
4
), pp.
242
249
. 10.1115/1.2794997
10.
Fan
,
Y.
,
Luo
,
L.
, and
Souyri
,
B.
,
2007
, “
Review of Solar Sorption Refrigeration Technologies: Development and Applications
,”
Renew. Sustain. Energy Rev.
,
11
(
8
), pp.
1758
1775
. 10.1016/j.rser.2006.01.007
11.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2017
, “
Optimization of Operating Temperatures in the Gas Operated Single to Triple Effect Vapour Absorption Refrigeration Cycles
,”
Int. J. Refrig.
,
82
, pp.
401
425
.10.1016/j.ijrefrig.2017.06.033
12.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
First and Second Law Analyses of Double Effect Parallel and Series Flow Direct Fired Absorption Cycles for Optimum Operating Parameters
,”
ASME J. Energy Resour. Technol.
,
141
(
12
), p.
124501
. 10.1115/1.4043880
13.
Tiwari
,
G. N.
,
Meraj
,
M.
, and
Khan
,
M. E.
,
2018
, “
Exergy Analysis of N-Photovoltaic Thermal-Compound Parabolic Concentrator (N-PVT-CPC) Collector for Constant Collection Temperature for Vapor Absorption Refrigeration (VAR) System
,”
Sol. Energy
,
173
, pp.
1032
1042
. 10.1016/j.solener.2018.08.031
14.
Meraj
,
M.
,
Khan
,
M. E.
, and
Azhar
,
M.
,
2020
, “
Performance Analyses of Photovoltaic Thermal Integrated Concentrator Collector Combined With Single Effect Absorption Cooling Cycle: Constant Flow Rate Mode
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121305
.10.1115/1.4047407
15.
Azhar
,
M.
, and
Altamush Siddiqui
,
M.
,
2020
, “
Comprehensive Exergy Analysis and Optimization of Operating Parameters for Double Effect Parallel Flow Absorption Refrigeration Cycle
,”
Therm. Sci. Eng. Prog.
16.
Azhar
,
M.
, and
Siddiqui
,
M. A.
,
2019
, “
Exergy Analysis of Single to Triple Effect Lithium Bromide-Water Vapour Absorption Cycles and Optimization of the Operating Parameters
,”
Energy Convers. Manag.
,
180
, pp.
1225
1246
. 10.1016/j.enconman.2018.11.062
17.
Samanta
,
S.
, and
Basu
,
D. N.
,
2016
, “
Energy and Entropy-Based Optimization of a Single-Stage Water-Lithium Bromide Absorption Refrigeration System
,”
Heat Transf. Eng.
,
37
(
2
), pp.
232
241
. 10.1080/01457632.2015.1044420
18.
Modi
,
N.
,
Pandya
,
B.
, and
Patel
,
J.
,
2020
, “
Investigation of an Energy Source Temperature for NH3 + NaSCN and NH3 + LiNO3 Absorption Refrigeration Systems
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
104502
. 10.1115/1.4047017
19.
Rosiek
,
S.
,
2019
, “
Exergy Analysis of a Solar-Assisted Air-Conditioning System: Case Study in Southern Spain
,”
Appl. Therm. Eng.
,
148
, pp.
806
816
. 10.1016/j.applthermaleng.2018.10.132
20.
Ramos
,
E. S.
,
Valencia
,
G. E.
,
Jiménez
,
A. M.
,
Osorio
,
M.
, and
Vanegas
,
M. C.
,
2016
, “
Modelling and Simulation of a Solar Single Effect Absorption Cooling System in Aspen Hysys®
,”
ASME Int. Mech. Eng. Congr. Expo. Proc.
,
6B-2016
.
21.
Florides
,
G. A.
,
Kalogirou
,
S. A.
,
Tassou
,
S. A.
, and
Wrobel
,
L. C.
,
2003
, “
Design and Construction of a LiBr-Water Absorption Machine
,”
Energy Convers. Manag.
,
44
(
15
), pp.
2483
2508
. 10.1016/S0196-8904(03)00006-2
22.
Kalogirou
,
S.
,
Florides
,
G.
,
Tassou
,
S.
, and
Wrobel
,
L.
,
2001
, “
Design and Construction of a Lithium Bromide Water Absorption Refrigerator
,”
CLIMA 2000/Napoli 2001 World Congress
,
Jan. 1
, pp.
15
18
.
23.
Bakhtiari
,
B.
,
Fradette
,
L.
,
Legros
,
R.
, and
Paris
,
J.
,
2011
, “
A Model for Analysis and Design of H2O-LiBr Absorption Heat Pumps
,”
Energy Convers. Manag.
,
52
(
2
), pp.
1439
1448
. 10.1016/j.enconman.2010.09.037
24.
Siddiqui
,
M. A.
,
1997
, “
Economic Analyses of Absorption Systems: Part A—Design and Cost Evaluation
,”
Energy Convers. Manag.
,
38
(
9
), pp.
889
904
. 10.1016/S0196-8904(96)00096-9
25.
Siddiqui
,
M. A.
,
1997
, “
Economic Analyses of Absorption Systems: Part B—Optimization of Operating Parameters
,”
Energy Convers. Manag.
,
38
(
9
), pp.
905
918
. 10.1016/S0196-8904(96)00095-7
26.
Said
,
S. A. M.
,
Spindler
,
K.
,
El-Shaarawi
,
M. A.
,
Siddiqui
,
M. U.
,
Schmid
,
F.
,
Bierling
,
B.
, and
Khan
,
M. M. A.
,
2016
, “
Design, Construction and Operation of a Solar Powered Ammonia-Water Absorption Refrigeration System in Saudi Arabia
,”
Int. J. Refrig.
,
62
, pp.
222
231
. 10.1016/j.ijrefrig.2015.10.026
27.
Ratlamwala
,
T. A. H.
, and
Abid
,
M.
,
2018
, “
Performance Analysis of Solar Assisted Multi-effect Absorption Cooling Systems Using Nanofluids: A Comparative Analysis
,”
Int. J. Energy Res.
, pp.
2901
2915
. 10.1002/er.3980
28.
Kern
,
D. Q.
,
1950
,
Process Heat Transfer
,
McGraw-Hill
,
New York
.
29.
Martinelli
,
R.C.
, and
Nelson
,
D. B.
,
1948
, “
Prediction of Pressure Drop during Forced-Circulation of Boiling Water
,”
Int. J. Heat Mass Transf.
,
70
, p.
695
.
30.
Cheremisinoff Nicholas
,
P.
,
1984
,
Heat Transfer Pocket Handbook.
,
Gulf Publishing Company
,
Houston, TX
.
31.
Akhtar
,
N.
, and
Mullick
,
S. C.
,
2007
, “
Computation of Glass-Cover Temperatures and Top Heat Loss Coefficient of Flat-Plate Solar Collectors With Double Glazing
,”
Energy
,
32
(
7
), pp.
1067
1074
. 10.1016/j.energy.2006.07.007
32.
Siddiqui
,
M. A.
,
1993
, “
Optimum Generator Temperatures in Four Absorption Cycles Using Different Sources of Energy
,”
Energy Convers. Manag.
,
34
(
4
), pp.
251
266
. 10.1016/0196-8904(93)90109-N
33.
Ge
,
Z.
,
Wang
,
H.
,
Wang
,
H.
,
Zhang
,
S.
, and
Guan
,
X.
,
2014
, “
Exergy Analysis of Flat Plate Solar Collectors
,”
Entropy
,
16
(
5
), pp.
2549
2567
. 10.3390/e16052549
You do not currently have access to this content.