Abstract

This paper presents a comparative study of four metaheuristic techniques, namely, the particle swarm optimization (PSO), genetic algorithm (GA), simulated annealing (SA), and the harmony search (HS), used in thermoenvironomic optimization of a benchmark gas turbine-based combined heat and power system known as CGAM problem. The performance comparison of the metaheuristic techniques is conducted by executing each algorithm for 30 runs to evaluate the reproducibility and stability of the optimal solutions. The study takes the exergetic, economic, and environmental factors into consideration in defining the thermoenvironomic objective function in terms of system cost rate. The thermodynamic and the economic model vis-à-vis optimization is validated by comparing the present results with previously published ones. From the optimal results, the PSO was found to be the most effective technique for thermoenvironomic optimization of the CGAM problem. Further, to highlight the benefits of optimization, the results obtained from the best method (PSO) are compared with those obtained by using the base case design variables recommended previously for the classical CGAM problem. The comparative results reveal that the system cost rate and the exergoeconomic factor of the CGAM system are reduced by 10.25% and 5.58%, respectively. Besides, the CO2 emission also reduces from 16.34 tons/h to 15.17 tons/h.

References

1.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1995
,
Thermal Design and Optimization
,
John Wiley & Sons
,
New York
.
2.
Kanoglu
,
M.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2007
, “
Understanding Energy and Exergy Efficiencies for Improved Energy Management in Power Plants
,”
Energypolicy
,
35
(
7
), pp.
3967
3978
. 10.1016/j.enpol.2007.01.015
3.
Valdés
,
M.
,
Durán
,
M. D.
, and
Rovira
,
A.
,
2003
, “
Thermoeconomic Optimization of Combined Cycle Gas Turbine Power Plants Using Genetic Algorithms
,”
Appl. Therm. Eng.
,
23
(
17
), pp.
2169
2182
. 10.1016/S1359-4311(03)00203-5
4.
Lenti
,
F.
,
Masardo
,
A.
, and
Satta
,
A.
,
1989
, “
Thermoeconomic Optimization of a Simple Thermal Power Plant Using Mathematical Minimization Algorithms
,”
Proceedings of the 24th Intersociety Energy Conversion Engineering Conference
,
Washington, DC
,
Aug. 6–11
,
IEEE
, pp.
1725
1730
.
5.
Valero
,
A.
,
Lozano
,
M. A.
,
Serra
,
L.
,
Tsatsaronis
,
G.
, and
Pisa
,
J.
,
1994
, “
CGAM Problem: Definition and Conventional Solution
,”
Energy (Oxford)
,
19
(
3
), pp.
279
286
. 10.1016/0360-5442(94)90112-0
6.
Valero
,
A.
,
Lozano
,
M.
,
Serra
,
L.
, and
Torres
,
C.
,
1994
, “
Application of the Exergetic Cost Theory to the CGAM Problem
,”
Energy
,
19
(
3
), pp.
365
381
. 10.1016/0360-5442(94)90116-3
7.
Von Spakovsky
,
M. R.
,
1994
, “
Application of Engineering Functional Analysis to the Analysis and Optimization of the CGAM Problem
,”
Energy
,
19
(
3
), pp.
343
364
. 10.1016/0360-5442(94)90115-5
8.
Tsatsaronis
,
G.
, and
Pisa
,
J.
,
1994
, “
Exergoeconomic Evaluation and Optimization of Energy Systems—Application to the CGAM Problem
,”
Energy
,
19
(
3
), pp.
287
321
. 10.1016/0360-5442(94)90113-9
9.
Frangopoulos
,
C. A.
,
1994
, “
Application of the Thermoeconomic Functional Approach to the CGAM Problem
,”
Energy
,
19
(
3
), pp.
323
342
. 10.1016/0360-5442(94)90114-7
10.
Valero
,
A.
,
Serra
,
L.
, and
Uche
,
J.
,
2006
, “
Fundamentals of Exergy Cost Accounting and Thermoeconomics Part II: Applications
,”
ASME J. Energy Resour. Technol.
,
128
(
1
) pp.
9
15
. 10.1115/1.2134731
11.
Schwefel
,
H.
,
1995
,
Evolution and Optimum Seeking
,
John Wiley & Sons Google Scholar Google Scholar Digital Library Digital Library
,
New York
.
12.
Toffolo
,
A.
, and
Lazzaretto
,
A.
,
2002
, “
Evolutionary Algorithms for Multiobjective Energetic and Economic Optimization in Thermal System Design
,”
Energy
,
27
(
6
), pp.
549
567
. 10.1016/S0360-5442(02)00009-9
13.
Sahoo
,
P.
,
2008
, “
Exergoeconomic Analysis and Optimization of a Cogeneration System Using Evolutionary Programming
,”
Appl. Therm. Eng.
,
28
(
13
), pp.
1580
1588
. 10.1016/j.applthermaleng.2007.10.011
14.
Gorji-Bandpy
,
M.
, and
Goodarzian
,
H.
,
2011
, “
Exergoeconomic Optimization of Gas Turbine Power Plants Operating Parameters Using Genetic Algorithms: A Case Study
,”
Therm. Sci.
,
15
(
1
), pp.
43
54
. 10.2298/TSCI101108010G
15.
Dincer
,
I.
,
Rosen
,
M. A.
, and
Ahmadi
,
P.
,
2017
,
Optimization of Energy Systems
,
John Wiley and Sons
,
New Jersey
.
16.
Groniewsky
,
A.
,
2013
, “
Exergoeconomic Optimization of a Thermal Power Plantusing Particle Swarm Optimization
,”
Therm. Sci.
,
17
(
2
), pp.
509
524
. 10.2298/TSCI120625213G
17.
Agazzani
,
A.
,
Massardo
,
A.
, and
Frangopoulos
,
C.
,
1998
, “
Environmental Influence on the Thermoeconomic Optimization of a Combined Plant With NOx Abatement
,”
ASME J. Energy Resour. Technol.
,
120
(
3
), pp.
557
565
. 10.1115/1.2818183
18.
Ahmadi
,
P.
, and
Dincer
,
I.
,
2011
, “
Thermodynamic and Exergoenvironmental Analyses, and Multi-Objective Optimization of a Gas Turbine Power Plant
,”
Appl. Therm. Eng.
,
31
(
14–15
), pp.
2529
2540
. 10.1016/j.applthermaleng.2011.04.018
19.
Shamoushaki
,
M.
, and
Ehyaei
,
M. A.
,
2018
, “
Exergy, Economic and Environmental(3E) Analysis of a Gas Turbine Power Plant and Optimization by MOPSO Algorithm
,”
Therm. Sci.
,
22
(
6 Part A
), pp.
2641
2651
. 10.2298/TSCI161011091S
20.
Alam
,
M. N.
,
Das
,
B.
, and
Pant
,
V.
,
2015
, “
A Comparative Study of Metaheuristic Optimization Approaches for Directional Overcurrent Relays Coordination
,”
Electr. Power Syst. Res.
,
128
, pp.
39
52
. 10.1016/j.epsr.2015.06.018
21.
Reche-López
,
P.
,
Ruiz-Reyes
,
N.
,
Galán
,
S. G.
, and
Jurado
,
F.
,
2009
, “
Comparison of Metaheuristic Techniques to Determine Optimal Placement of Biomass Power Plants
,”
Energy Convers. Manage.
,
50
(
8
), pp.
2020
2028
. 10.1016/j.enconman.2009.04.008
22.
Kennedy
,
J.
, and
Eberhart
,
R.
,
1995
, “
Particle Swarm Optimization
,”
Proceedings of ICNN’95-International Conference on Neural Networks
,
Perth, WA, Australia
,
Nov. 27–Dec. 1
, Vol.
4
,
IEEE
, pp.
1942
1948
.
23.
Eberhart
,
R.
, and
Kennedy
,
J.
,
1995
, “
A New Optimizer Using Particle Swarm Theory
,”
MHS’95. Proceedings of the Sixth International Symposium on MicroMachine and Human Science
,
Nagoya, Japan
,
Oct. 4–6
,
IEEE
, pp.
39
43
.
24.
Fu
,
W.
,
Yang
,
X.
,
Wang
,
L.
, and
Yang
,
Y.
,
2015
, “
Feedwater Heating Allocation Optimization for Large Capacity Steam Turbine Unit Based on Particle Swarm Optimization
,”
ASME J. Energy Resour. Technol.
,
137
(
4
), p.
042005
. 10.1115/1.4030368
25.
Goldberg
,
D. E.
, and
Holland
,
J. H.
,
1988
, “
Genetic Algorithms and Machine Learning
,”
Machine Learning
,
3
, pp.
95
99
.
26.
Goldberg
,
D. E.
,
1989
, “Genetic Algorithms in Search,”
Optimization, and Machine Learning
,
Addison-Wesley Longman Publishing Co., Inc.
,
Boston, MA
.
27.
Michalewicz
,
Z.
,
2013
,
Genetic Algorithms+ Data Structures = Evolution Programs
,
Springer-Verlag
,
New York
.
28.
Geem
,
Z. W.
,
Kim
,
J. H.
, and
Loganathan
,
G. V.
,
2001
, “
A New Heuristic Optimization Algorithm: Harmony Search
,”
Simulation
,
76
(
2
), pp.
60
68
. 10.1177/003754970107600201
29.
Mahdavi
,
M.
,
Fesanghary
,
M.
, and
Damangir
,
E.
,
2007
, “
An Improved Harmony Search Algorithm for Solving Optimization Problems
,”
Appl. Math. Computation
,
188
(
2
), pp.
1567
1579
. 10.1016/j.amc.2006.11.033
30.
Kirkpatrick
,
S.
,
Gelatt
,
C. D.
, and
Vecchi
,
M. P.
,
1983
, “
Optimization by Simulated Annealing
,”
Science
,
220
(
4598
), pp.
671
680
. 10.1126/science.220.4598.671
31.
Yang
,
X.-S.
,
2013
, “
Optimization and Metaheuristic Algorithms in Engineering
,”
Metaheuristics Water, Geotech. Transp. Eng.
, pp.
1
23
.
32.
Dowsland
,
K. A.
, and
Thompson
,
J.
,
2012
, “
Simulated Annealing
,”
Handbook Natural Computing
, vol. 4, pp.
1623
1655
.
33.
Nondy
,
J.
, and
Gogoi
,
T. K.
,
2019
, “
Exergy Analysis of a Combined Gas Turbine and Organic Rankine Cycle-Based Power and Absorption Cooling Systems
,”
Gas Turbine India Conference
, Vol.
83525
,
American Society of Mechanical Engineers
, p.
V001T02A002
.
34.
Temir
,
G.
, and
Bilge
,
D.
,
2004
, “
Thermoeconomic Analysis of a Trigeneration System
,”
Appl. Therm. Eng.
,
24
(
17–18
), pp.
2689
2699
. 10.1016/j.applthermaleng.2004.03.014
35.
Ahmadi
,
P.
,
Dincer
,
I.
, and
Rosen
,
M. A.
,
2011
, “
Exergy, Exergoeconomic and Environmental Analyses and Evolutionary Algorithm Based Multi-Objective optimization of Combined Cycle Power Plants
,”
Energy
,
36
(
10
), pp.
5886
5898
. 10.1016/j.energy.2011.08.034
36.
Valero
,
A.
,
Serra
,
L.
, and
Uche
,
J.
,
2006
, “
Fundamentals of Exergy Cost Accounting and Thermoeconomics. Part I: Theory
,”
ASME J. Energy Resour. Technol.
,
128
(
1
), pp.
1
8
. 10.1115/1.2134732
37.
Khaljani
,
M.
,
Saray
,
R. K.
, and
Bahlouli
,
K.
,
2015
, “
Comprehensive Analysis of Energy, Exergy and Exergo-Economic of Cogeneration of Heat and Power in a Combined Gas Turbine and Organic Rankine Cycle
,”
Energy Convers. Manage.
,
97
, pp.
154
165
. 10.1016/j.enconman.2015.02.067
38.
Pan
,
Z.
,
Yan
,
M.
,
Shang
,
L.
,
Li
,
P.
,
Zhang
,
L.
, and
Liu
,
J.
,
2020
, “
Thermoeconomic Analysis of a Combined Natural Gas Cogeneration System With a Supercritical CO2 Brayton Cycle and an Organic Rankine Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
10
), p.
102108
. 10.1115/1.4047306
39.
Mansureh
,
K.
,
Rahim
,
K. S.
, and
Keyvan
,
B.
,
2018
,
“Multi-Objective Optimization of Cogeneration of Power and Heat in a Combined Gas Turbine and Organic Rankine Cycle,” Exergy for a Better Environment and Improved Sustainability
,
Springer
,
New York
, pp.
843
861
.
40.
Ahmadi
,
P.
,
Rosen
,
M. A.
, and
Dincer
,
I.
,
2011
, “
Greenhouse Gas Emission and Exergo-Environmental Analyses of a Trigeneration Energy System
,”
Int. J. Greenhouse Gas Control
,
5
(
6
), pp.
1540
1549
. 10.1016/j.ijggc.2011.08.011
41.
Yazdi
,
B. A.
,
Yazdi
,
B. A.
,
Ehyaei
,
M. A.
, and
Ahmadi
,
A.
,
2015
, “
Optimization of Micro Combined Heat and Power Gas Turbine by Genetic Algorithm
,”
Therm. Sci.
,
19
(
1
), pp.
207
218
. 10.2298/tsci121218141y
You do not currently have access to this content.