Abstract

Refrigerants of the conventional cooling systems contribute to global warming and ozone depletion significantly, therefore it is necessary to develop new cooling systems that use renewable energy resources and waste heat to perform the cooling function with eco-friendly working fluids. To address this, the present study introduces and analyzes a novel regenerative thermo-mechanical refrigeration system that can be powered by renewable heat sources (solar, geothermal, or waste heat). The system consists of a novel expander–compressor unit (ECU) integrated with a vapor-compression refrigeration system. The integrated system operates at the higher-performance supercritical conditions of the working fluids as opposed to the lower-performance subcritical conditions. The performance of the system is evaluated based on several indicators including the power loop efficiency, the coefficient of performance (COP) of the cooling loop, and the expander–compressor diameters. Several working fluids were selected and compared for their suitability based on their performance and environmental effects. It was found that for heat source temperature below 100 °C, adding the regenerator to the system has no benefit. However, the regenerator increases the power efficiency by about 1% for a heat source temperature above 130 °C. This was achieved with a very small size regenerator (Dr = 6.5 mm, Lr = 142 mm). Results show that there is a tradeoff between high-performance fluids and their environmental effects. Using R32 as a working fluid at heat source temperature Th = 150 °C and cold temperature Tc1 = 40 °C, the system produces a cooling capacity of 1 kW with power efficiency of 10.23%, expander diameter of 53.12 mm, and compressor diameter of 75.4 mm.

References

1.
IIF-IIR
,
Coulomb
,
D.
,
Dupont
,
J. L.
, and
Pichard
,
A.
,
2015
, The Role of Refrigeration in the Global Economy, 29th Informatory Note on Refrigeration Technologies, Periodical Article, Record ID: 30016453, International Institute of Refrigeration, IIF-IIR, pp.
1
16
, https://iifiir.org/en/fridoc/the-role-of-refrigeration-in-the-global-economy
2.
The World Bank
,
2020
,
Electricity Production From Oil, Gas and Coal Sources (% of Total), Indicator ID: EG.ELC.FOSL.ZS, source: IEA Statistics © OECD/IEA 2014
, http://www.iea.org/stats/index.asp, Last updated: December 16, 2020.
3.
Shublaq
,
M.
, and
Sleiti
,
A. K.
,
2020
, “
Experimental Analysis of Water Evaporation Losses in Cooling Towers Using Filters
,”
Appl. Therm. Eng.
,
175
, p.
115418
. 10.1016/j.applthermaleng.2020.115418
4.
Abas
,
N.
,
Kalair
,
A. R.
,
Khan
,
N.
,
Haider
,
A.
,
Saleem
,
Z.
, and
Shoaib
,
M.
,
2018
, “
Natural and Synthetic Refrigerants, Global Warming: A Review
,”
Renew. Sustain. Energy Rev.
,
90
, pp.
557
569
. 10.1016/j.rser.2018.03.099
5.
Sleiti
,
A. K.
,
2017
, “
Tidal Power Technology Review With Potential Applications in Gulf Stream
,”
Renew. Sustain. Energy Rev.
,
69
, pp.
435
441
. 10.1016/j.rser.2016.11.150
6.
Kasaeian
,
A.
,
Hosseini
,
S. M.
,
Sheikhpour
,
M.
, and
Mahian
,
O.
,
2018
, “
Applications of Eco-Friendly Refrigerants and Nanorefrigerants: A Review
,”
Renew. Sustain. Energy Rev.
,
96
, pp.
91
99
. 10.1016/j.rser.2018.07.033
7.
Al-Hamed
,
K. H.
, and
Dincer
,
I.
,
2019
, “
Investigation of a Concentrated Solar-Geothermal Integrated System With a Combined Ejector-Absorption Refrigeration Cycle for a Small Community
,”
Int. J. Refrig.
,
106
, pp.
407
426
. 10.1016/j.ijrefrig.2019.06.026
8.
Sleiti
,
A. K.
,
Al-Ammari
,
W. A.
, and
Al-Khawaja
,
M.
,
2020
, “
Review of Innovative Approaches of Thermo-Mechanical Refrigeration Systems Using Low Grade Heat
,”
Int. J. Energy Res.
,
2020
(
44
), pp.
9808
9838
. 10.1002/er.5556
9.
Bataineh
,
K.
, and
Taamneh
,
Y.
,
2016
, “
Review and Recent Improvements of Solar Sorption Cooling Systems
,”
Energy Build.
,
128
, pp.
22
37
. 10.1016/j.enbuild.2016.06.075
10.
Al-Alili
,
A.
,
Hwang
,
Y.
, and
Radermacher
,
R.
,
2014
, “
Review of Solar Thermal Air Conditioning Technologies
,”
Int. J. Refrig.
,
39
, pp.
4
22
. 10.1016/j.ijrefrig.2013.11.028
11.
Bolt
,
A. A.
,
Chea
,
B.
,
Dincer
,
I.
,
Agelin-Chaab
,
M.
, and
Rosen
,
M. A.
,
2021
, “
Design of a Multigenerational System With Absorption Cooling for a Residential Community: A Case Study
,”
ASME J. Energy Resour. Technol.
,
143
(
6
), p.
061202
. 10.1115/1.4048532
12.
Zeyghami
,
M.
,
Goswami
,
D. Y.
, and
Stefanakos
,
E.
,
2015
, “
A Review of Solar Thermo-Mechanical Refrigeration and Cooling Methods
,”
Renew. Sustain. Energy Rev.
,
51
, pp.
1428
1445
. 10.1016/j.rser.2015.07.011
13.
Sleiti
,
A. K.
,
Al-ammari
,
W. A.
, and
Al-khawaja
,
M.
,
2020
, “
A Novel Solar Integrated Distillation and Cooling System—Design and Analysis
,”
Sol. Energy
,
206
, pp.
68
83
. 10.1016/j.solener.2020.05.107
14.
Sleiti
,
A. K.
,
Rasras
,
A.
,
Jafar
,
W.
,
Alam
,
M.
,
Glushenkov
,
M.
, and
Kronberg
,
A.
,
2018
, “
Novel Thermo Mechanical Refrigeration Cycle Utilizing Waste Heat
,”
ICTEA Int. Conf. Therm. Eng.
,
2018 (2018)
(
ICTEA 2018
), pp.
4
8
.
15.
Seckin
,
C.
,
2020
, “
Effect of Operational Parameters on a Novel Combined Cycle of Ejector Refrigeration Cycle and Kalina Cycle
,”
ASME J. Energy Resour. Technol.
,
142
(
1
), p.
012001
. 10.1115/1.4044220
16.
Rahbar
,
K.
,
Mahmoud
,
S.
,
Al-Dadah
,
R. K.
,
Moazami
,
N.
, and
Mirhadizadeh
,
S. A.
,
2017
, “
Review of Organic Rankine Cycle for Small-Scale Applications
,”
Energy Convers. Manage.
,
134
, pp.
135
155
. 10.1016/j.enconman.2016.12.023
17.
Xu
,
B.
,
Rathod
,
D.
,
Yebi
,
A.
,
Filipi
,
Z.
,
Onori
,
S.
, and
Hoffman
,
M.
,
2019
, “
A Comprehensive Review of Organic Rankine Cycle Waste Heat Recovery Systems in Heavy-Duty Diesel Engine Applications
,”
Renew. Sustain. Energy Rev.
,
107
, pp.
145
170
. 10.1016/j.rser.2019.03.012
18.
Bekiloğlu
,
H. E.
,
Bedir
,
H.
, and
Anlaş
,
G.
,
2020
, “
Organic Rankine Cycle Optimization With Explicit Designs of Evaporator and Radial Inflow Turbine
,”
ASME J. Energy Resour. Technol.
,
142
(
7
), p.
072103
. 10.1115/1.4046942
19.
Glushenkov
,
M.
,
Sprenkeler
,
M.
,
Kronberg
,
A.
, and
Kirillov
,
V.
,
2012
, “
Single-Piston Alternative to Stirling Engines
,”
Appl. Energy
,
97
, pp.
743
748
. 10.1016/j.apenergy.2011.12.050
20.
Nikbakhti
,
R.
,
Wang
,
X.
,
Hussein
,
A. K.
, and
Iranmanesh
,
A.
,
2020
, “
Absorption Cooling Systems—Review of Various Techniques for Energy Performance Enhancement
,”
Alex. Eng. J.
,
59
(
2
), pp.
707
738
. 10.1016/j.aej.2020.01.036
21.
Sarbu
,
I.
, and
Sebarchievici
,
C.
,
2015
, “
General Review of Solar-Powered Closed Sorption Refrigeration Systems
,”
Energy Convers. Manage.
,
105
, pp.
403
422
. 10.1016/j.enconman.2015.07.084
22.
Little
,
A. B.
, and
Garimella
,
S.
,
2016
, “
A Critical Review Linking Ejector Flow Phenomena With Component- and System-Level Performance
,”
Int. J. Refrig.
,
70
, pp.
243
268
. 10.1016/j.ijrefrig.2016.05.015
23.
Touré
,
A.
, and
Stouffs
,
P.
,
2014
, “
Modeling of the Ericsson Engine
,”
Energy
,
76
, pp.
445
452
. 10.1016/j.energy.2014.08.030
24.
Kim
,
Y.
,
Shin
,
D. K.
, and
Lee
,
J. H.
,
2004
, “
A New Ericsson Cycle Comprising a Scroll Expander and a Scroll Compressor for Power and Refrigeration Applications
,”
International Refrigeration and Air Conditioning Conference
,
Purdue University, West Lafayette, IN
,
Paper 719.
https://docs.lib.purdue.edu/iracc/719/
25.
Sleiti
,
A. K.
,
Al-Khawaja
,
M.
,
Glushenkov
,
M.
, and
Kronberg
,
A.
,
2019
, “
Using Low Grade Heat for Thermo-Mechanical Refrigeration—Heat-to-Cold Transformations
,”
4th HVAC Contracting Conference Bridging the Gap Between Design, Construction and Facility Management
,
Doha - The City, Qatar
,
Nov. 23–24
https://ashraeqatar.org/4th-hvac-contracting-conference.html.
26.
Wang
,
D.
,
Ling
,
X.
,
Peng
,
H.
,
Liu
,
L.
, and
Tao
,
L. L.
,
2013
, “
Efficiency and Optimal Performance Evaluation of Organic Rankine Cycle for Low Grade Waste Heat Power Generation
,”
Energy
,
50
(
1
), pp.
343
352
. 10.1016/j.energy.2012.11.010
27.
Mavrou
,
P.
,
Papadopoulos
,
A. I.
,
Stijepovic
,
M. Z.
,
Seferlis
,
P.
,
Linke
,
P.
, and
Voutetakis
,
S.
,
2015
, “
Novel and Conventional Working Fluid Mixtures for Solar Rankine Cycles: Performance Assessment and Multi-Criteria Selection
,”
Appl. Therm. Eng.
,
75
, pp.
384
396
. 10.1016/j.applthermaleng.2014.10.077
28.
Frutiger
,
J.
,
Andreasen
,
J.
,
Liu
,
W.
,
Spliethoff
,
H.
,
Haglind
,
F.
,
Abildskov
,
J.
, and
Sin
,
G.
,
2016
, “
Working Fluid Selection for Organic Rankine Cycles—Impact of Uncertainty of Fluid Properties
,”
Energy
,
109
, pp.
987
997
. 10.1016/j.energy.2016.05.010
29.
Aphornratana
,
S.
, and
Sriveerakul
,
T.
,
2010
, “
Analysis of a Combined Rankine-Vapour-Compression Refrigeration Cycle
,”
Energy Convers. Manag.
,
51
(
12
), pp.
2557
2564
. 10.1016/j.enconman.2010.04.016
30.
Sleiti
,
A. K.
,
Al-Khawaja
,
M.
, and
Al-Ammari
,
W. A.
,
2020
, “
A Combined Thermo-Mechanical Refrigeration System With Isobaric Expander-Compressor Unit Powered by Low Grade Heat—Design and Analysis
,”
Int. J. Refrig.
,
120
, pp.
39
49
. 10.1016/j.ijrefrig.2020.08.017
31.
Cengel
,
Y. A.
, and
Boles
,
M. A.
,
2015
,
Thermodynamics: An Engineering Approach
, 8th ed.,
McGraw-Hill Education
,
New York
.
32.
Glushenkov
,
M.
,
Kronberg
,
A.
,
Knoke
,
T.
, and
Kenig
,
E. Y.
,
2018
, “
Isobaric Expansion Engines: New Opportunities in Energy Conversion for Heat Engines, Pumps and Compressors
,”
Energies
,
11
(
1
), p.
154
. 10.3390/en11010154
33.
Cengel
,
Y. A.
, and
Ghajar
,
A. J.
,
2015
,
Heat and Mass Transfer, Fundamentals & Application
, 5th ed.,
McGraw-Hill Education
,
New York
.
34.
Sleiti
,
A. K.
,
2020
, “
Isobaric Expansion Engines Powered by Low-Grade Heat—Working Fluid Performance and Selection Database for Power and Thermomechanical Refrigeration
,”
Energy Technol.
,
8
(
11
), p.
2000613
. 10.1002/ente.202000613
You do not currently have access to this content.