Abstract

Thermoelectric generators (TEGs) are widely used in many industries. The voltage and output power of TEG chips are critical indicators to evaluate the performance of TEGs. The conventional method is to directly test the output voltage and power of the whole TEG chip that contains 127 pairs of P- and N-type (PN) legs (127-PN-TEG). However, the assembling of these PN legs is very time-consuming. In order to reduce experimental time and the consumption of TEG materials, we proposed an experimental method. We developed the test apparatus for the rapid evaluation of TEG performance using a TEG chip with a single pair of PN legs (1-PN-TEG). We made several 1-PN-TEGs and 127-PN-TEGs using the same thermoelectric material (bismuth telluride). We then measured the voltage and the power of these 1-PN-TEGs and 127-PN-TEGs, respectively. The experimental results were compared and analyzed. The comparison showed that the voltage of 127-PN-TEG is equal to the voltage of 1-PN-TEG times 127, which implies that we could use the test data of 1-PN-TEG to evaluate the performance of 127-PN-TEG. Using the experimental device developed in this paper, we also studied the effects of the PN leg area (cross-sectional area of PN legs) and the pressure applied over the TEGs on the output power of 1-PN-TEG. The experimental results showed that the power per unit area decreases with an increase in the 1-PN-TEG's PN leg area when the temperature difference between the hot and cold sides was constant. Under specific temperature difference conditions, the open-circuit voltage and the output power will increase with the pressure applied on the TEG chips.

References

1.
Antonino
,
P.
,
Daniele
,
B.
,
Martin
,
C.
,
David
,
V.
,
Vladimir
,
K.
,
Lukas
,
P.
,
Silvia
,
C.
,
Maurizio
,
S.
, and
Marek
,
P.
,
2018
, “
Thermal Energy Harvesting on the Bodily Surfaces of Arms and Legs Through a Wearable Thermo-Electric Generator
,”
Sensors
,
18
(
6
), p.
1927
.
2.
Jaziri
,
N.
,
Boughamoura
,
A.
,
Mueller
,
J.
,
Mezghani
,
B.
, and
Ismail
,
M.
,
2019
, “
A Comprehensive Review of Thermoelectric Generators: Technologies and Common Applications
,”
Energy
,
6
, pp.
264
287
.
3.
Wang
,
X.
,
Huang
,
Y.
,
Cheng
,
C.
,
Lin
,
D. T.
, and
Kang
,
C.
,
2012
, “
A Three-Dimensional Numerical Modeling of Thermoelectric Device With Consideration of Coupling of Temperature Field and Electric Potential Field
,”
Energy
,
47
(
1
), pp.
488
497
.
4.
Araiz
,
M.
,
Casi
,
Á.
,
Catalán
,
L.
,
Martínez
,
Á.
, and
Astrain
,
D.
,
2020
, “
Prospects of Waste-Heat Recovery From a Real Industry Using Thermoelectric Generators: Economic and Power Output Analysis
,”
Energy Convers. Manage.
,
205
, p.
112376
.
5.
Crane
,
D. T.
, and
Bell
,
L. E.
,
2009
, “
Design to Maximize Performance of a Thermoelectric Power Generator With a Dynamic Thermal Power Source
,”
ASME J. Energy Resour. Technol.
,
131
(
1
), p.
012401
.
6.
Al-Nimr
,
M. A.
,
Tashtoush
,
B.
, and
Hasan
,
A.
,
2020
, “
A Novel Hybrid Solar Ejector Cooling System With Thermoelectric Generators
,”
Energy
,
198
, p.
117318
.
7.
Li
,
K.
,
Bian
,
H.
,
Liu
,
C.
,
Zhang
,
D.
, and
Yang
,
Y.
,
2015
, “
Comparison of Geothermal With Solar and Wind Power Generation Systems
,”
Renew. Sustain. Energy Rev.
,
42
, pp.
1464
1474
.
8.
Shittu
,
S.
,
Li
,
G.
,
Akhlaghi
,
Y. G.
,
Ma
,
X.
,
Zhao
,
X.
, and
Ayodele
,
E.
,
2019
, “
Advancements in Thermoelectric Generators for Enhanced Hybrid Photovoltaic System Performance
,”
Renew. Sustain. Energy Rev.
,
109
, pp.
24
54
.
9.
Venkateshwar
,
K.
,
Siddique
,
A. R. M.
,
Tasnim
,
S.
,
Simha
,
H.
, and
Mahmud
,
S.
,
2021
, “
Thermoelectric Generator Integrated Solar Air Heater: A Compact Passive System
,”
ASME J. Energy Resour. Technol.
,
143
(
4
), p.
042102
.
10.
Goswami
,
R.
, and
Das
,
R.
,
2020
, “
Experimental Analysis of a Novel Solar Pond Driven Thermoelectric Energy System
,”
ASME J. Energy Resour. Technol.
,
142
(
12
), p.
121302
.
11.
Li
,
K.
,
Garrison
,
G.
,
Moore
,
M.
,
Zhu
,
Y.
,
Liu
,
C.
,
Hepper
,
J.
,
Bandt
,
L.
, and
Petty
,
S.
,
2020
, “
Field Test of Thermoelectric Generators at Bottle Rock Geothermal Power Plant
,”
J. Power Sources
,
485
, pp.
1
9
.
12.
Selvam
,
C.
,
Manikandan
,
S.
,
Krishna
,
N. V.
,
Lamba
,
R.
, and
Mahian
,
O.
,
2020
, “
Enhanced Thermal Performance of a Thermoelectric Generator With Phase Change Materials
,”
Int. Commun. Heat Mass Transfer
,
114
, p.
104561
.
13.
Rowe
,
D. M.
, and
Min
,
G.
,
1998
, “
Evaluation of Thermoelectric Modules for Power Generation
,”
J. Power Sources
,
73
(
2
), pp.
193
198
.
14.
Zhou
,
S.
,
Sammakia
,
B. G.
,
White
,
B.
,
Borgesen
,
P.
, and
Chen
,
C.
,
2015
, “
Multiscale Modeling of Thermoelectric Generators for Conversion Performance Enhancement
,”
Int. J. Heat Mass Transfer
,
81
, pp.
639
645
.
15.
Li
,
K.
,
Garrison
,
G.
,
Moore
,
M.
,
Zhu
,
Y.
,
Liu
,
C.
,
Horne
,
R.
, and
Petty
,
S.
,
2020
, “
An Expandable Thermoelectric Power Generator and the Experimental Studies on Power Output
,”
Int. J. Heat Mass Transfer
,
160
, pp.
1
8
.
16.
Wang
,
J.
,
Cao
,
P.
,
Li
,
X.
,
Song
,
X.
,
Zhao
,
C.
, and
Zhu
,
L.
,
2019
, “
Experimental Study on the Influence of Peltier Effect on the Output Performance of Thermoelectric Generator and Deviation of Maximum Power Point
,”
Energy Convers. Manage.
,
200
, p.
112074
.
17.
Chen
,
J.
,
Li
,
K.
,
Liu
,
C.
,
Li
,
M.
,
Lv
,
Y.
,
Jia
,
L.
, and
Jiang
,
S.
,
2017
, “
Enhanced Efficiency of Thermoelectric Generator by Optimizing Mechanical and Electrical Structures
,”
Energies
,
10
(
9
), p.
1329
.
18.
Cheng
,
F.
,
Hong
,
Y.
, and
Zhu
,
C.
,
2014
, “
A Physical Model for Thermoelectric Generators With and Without Thomson Heat
,”
ASME J. Energy Resour. Technol.
,
136
(
1
), p.
011201
.
19.
Karami Rad
,
M.
,
Rezania
,
A.
,
Omid
,
M.
,
Rajabipour
,
A.
, and
Rosendahl
,
L.
,
2019
, “
Study on Material Properties Effect for Maximization of Thermoelectric Power Generation
,”
Renew. Energy
,
138
, pp.
236
242
.
20.
Siddique
,
A. R. M.
,
Kratz
,
F.
,
Mahmud
,
S.
, and
Van Heyst
,
B.
,
2019
, “
Energy Conversion by Nanomaterial Based Trapezoidal-Shaped Leg of Thermoelectric Generator (TEG) Considering Convection Heat Transfer Effect
,”
ASME J. Energy Resour. Technol.
,
141
(
8
), p.
082001
.
21.
Barry
,
M. M.
,
Agbim
,
K. A.
,
Rao
,
P.
,
Clifford
,
C. E.
,
Reddy
,
B. V. K.
, and
Chyu
,
M. K.
,
2016
, “
Geometric Optimization of Thermoelectric Elements for Maximum Efficiency and Power Output
,”
Energy
,
112
, pp.
388
407
.
22.
Shittu
,
S.
,
Li
,
G.
,
Zhao
,
X.
, and
Ma
,
X.
,
2020
, “
Review of Thermoelectric Geometry and Structure Optimization for Performance Enhancement
,”
Appl. Energy
,
268
, pp.
1
31
.
23.
Chen
,
W. H.
,
Wang
,
C. C.
, and
Hung
,
C. I.
,
2014
, “
Geometric Effect on Cooling Power and Performance of an Integrated Thermoelectric Generation-Cooling System
,”
Energy Convers. Manage.
,
87
, pp.
566
575
.
24.
Xuan
,
X. C.
,
Ng
,
K. C.
,
Yap
,
C.
, and
Chua
,
H. T.
,
2002
, “
A General Model for Studying Effects of Interface Layers on Thermoelectric Devices Performance
,”
Int. J. Heat Mass Transfer
,
45
(
26
), pp.
5159
5170
.
25.
Cheng
,
F.
,
Hong
,
Y.
, and
Chao
,
Z.
,
2014
, “
Structure Optimization of a BiTe-Based Thermoelectric Module
,”
High Volt. Technol.
,
40
(
5
), pp.
1599
1604
.
26.
Jia
,
X.
, and
Guo
,
Q.
,
2020
, “
Design Study of Bismuth-Telluride-Based Thermoelectric Generators Based on Thermoelectric and Mechanical Performance
,”
Energy
,
190
, p.
116226
.
27.
Liu
,
T.
, and
Yang
,
Z.
,
2018
, “
Performance Assessment and Optimization of a Thermophotovoltaic Converter–Thermoelectric Generator Combined System
,”
ASME J. Energy Resour. Technol.
,
140
(
7
), p.
072010
.
28.
Buchalik
,
R.
,
Nowak
,
I.
,
Rogozinski
,
K.
, and
Nowak
,
G.
,
2019
, “
Detailed Model of a Thermoelectric Generator Performance
,”
ASME J. Energy Resour. Technol.
,
142
(
2
), p.
021601
.
29.
Rezania
,
A.
,
Rosendahl
,
L. A.
, and
Yin
,
H.
,
2014
, “
Parametric Optimization of Thermoelectric Elements Footprint for Maximum Power Generation
,”
J. Power Sources
,
255
, pp.
151
156
.
30.
Rabari
,
R.
,
Mahmud
,
S.
, and
Dutta
,
A.
,
2015
, “
Effect of Thermal Conductivity on Performance of Thermoelectric Systems Based on Effective Medium Theory
,”
Int. J. Heat Mass Transfer
,
91
, pp.
190
204
.
31.
Du
,
Q.
,
Zhang
,
Y.
, and
Yu
,
S.
,
2014
, “
Influence of Contact Pressure on the Performance of Thermoelectric Generator
,”
J. Tianjin Univ. Nat. Sci. Eng. Technol. Ed.
,
47
(
1
), pp.
9
14
.
32.
Karthick
,
K.
,
Suresh
,
S.
,
Singh
,
H.
,
Joy
,
G. C.
, and
Dhanuskodi
,
R.
,
2019
, “
Theoretical and Experimental Evaluation of Thermal Interface Materials and Other Influencing Parameters for Thermoelectric Generator System
,”
Renew. Energy
,
134
, pp.
25
43
.
33.
Schock
,
H.
,
Caillet
,
T.
,
Case
,
E.
,
Fleurial
,
J. P.
,
Hogan
,
T.
,
Lyle
,
M.
,
Maloney
,
R.
,
Moran
,
K.
,
Ruckle
,
T.
,
Sakamoto
,
J.
,
Sheridan
,
T.
,
Shih
,
T.
,
Thompson
,
T.
,
Timm
,
E.
,
Zhang
,
L.
, and
Zhu
,
G.
,
2010
, “
Thermoelectric Conversion of Waste Heat to Electricity in an IC Engine Powered Vehicle
,”
Global Powertrain Congress 2010, GPC 2010 TROY—Proceedings
,
Munich, Germany
,
Sept. 22–23
.
34.
Wu
,
W.
,
Ma
,
C.
,
Chen
,
Y.
, and
Dou
,
Y.
,
2020
, “
Numerical Simulation and Simulation of Low Temperature Semiconductor Thermoelectric Power Generation Unit
,”
Power Technol.
,
44
(
1
), pp.
85
89
.
35.
Li
,
K.
,
Garrison
,
G.
,
Moore
,
M.
,
Zhu
,
Y.
,
Liu
,
C.
,
Horne
,
R.
, and
Petty
,
S.
,
2019
, “
Experimental Study on the Effects of Flow Rate and Temperature on Thermoelectric Power Generation
,”
Proceedings
,
Stanford University, Stanford, CA
,
Feb. 11–13
.
36.
Liu
,
C.
,
Chen
,
P.
, and
Li
,
K.
,
2014
, “
A 500 W Low-Temperature Thermoelectric Generator: Design and Experimental Study
,”
Int. J. Hydrogen Energy.
,
39
(
28
), pp.
15497
15505
.
37.
Rezania
,
A.
,
Yazawa
,
K.
,
Rosendahl
,
L. A.
, and
Shakouri
,
A.
,
2013
, “
Co-Optimized Design of Microchannel Heat Exchangers and Thermoelectric Generators
,”
Int. J. Therm. Sci.
,
72
, pp.
73
81
.
38.
Cheng
,
F.
,
Hong
,
Y.
,
Zhang
,
B.
, and
Tang
,
W.
,
2016
, “
Experimental Optimization of the Area-Specific Power for Thermoelectric Modules
,”
Spacecraft Environ. Eng.
,
33
(
4
), pp.
421
427
.
You do not currently have access to this content.