Abstract

Liquefaction and then transportation to the market is one of the promising options for the utilization of associated natural gas resources which are produced in oil fields. However, the flow of such resources is normally unsteady. Additionally, the associated gas in one oil field may exhaust in a few years and the liquefaction plant should be moved to another oil field with different specifications. In order to tackle such challenges, liquefaction systems not only must be optimally designed and operated but also should be flexible with respect to the gas flow fluctuations. The flexibility analysis of such processes is usually ignored in the optimization studies. In this research, first, the economic performance of two small-scale liquefaction processes (a single mixed-refrigerant process, SMR, and a nitrogen expander process) was optimized and compared. The results showed that the SMR process is economically more attractive (49% lower lifecycle cost compared to the nitrogen expander process). As a post-optimization step, flexibility analysis was performed to investigate the ability of optimal designs in overcoming gas flow fluctuations. For this purpose, five-thousand feed samples with different flowrate and methane content were supposed which formed a feasibility-check region. The results showed that with respect to the design constraints, the optimal SMR process is more flexible and feasibly operates in the entire region. However, the nitrogen expander process cannot feasibly operate for the gas feed with high flowrate and low methane content.

References

1.
Tabkhi
,
F.
,
Pibouleau
,
L.
,
Azzaro-Pantel
,
C.
, and
Domenech
,
S.
,
2009
, “
Total Cost Minimization of a High-Pressure Natural Gas Network
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
043002
. 10.1115/1.4000325
2.
Qyyum
,
M. A.
,
Qadeer
,
K.
, and
Lee
,
M.
,
2018
, “
Comprehensive Review of the Design Optimization of Natural Gas Liquefaction Processes: Current Status and Perspectives
,”
Ind. Eng. Chem. Res.
,
57
(
17
), pp.
5819
5844
. 10.1021/acs.iecr.7b03630
3.
Beltrán-Jiménez
,
K.
,
Chávez-Rodríguez
,
M. F.
, and
Szklo
,
A.
,
2018
, “
Associated Natural Gas Flare in the Integrated Market of the Southern Cone
,”
Energy Strateg. Rev.
,
22
, pp.
337
347
. 10.1016/j.esr.2018.10.005
4.
Xu
,
X.
,
Liu
,
J.
,
Jiang
,
C.
, and
Cao
,
L.
,
2013
, “
The Correlation Between Mixed Refrigerant Composition and Ambient Conditions in the PRICO LNG Process
,”
Appl. Energy
,
102
, pp.
1127
1136
. 10.1016/j.apenergy.2012.06.031
5.
Moein
,
P.
,
Sarmad
,
M.
,
Ebrahimi
,
H.
,
Zare
,
M.
,
Pakseresht
,
S.
, and
Vakili
,
S. Z.
,
2015
, “
APCI- LNG Single Mixed Refrigerant Process for Natural Gas Liquefaction Cycle: Analysis and Optimization
,”
J. Nat. Gas Sci. Eng.
,
26
, pp.
470
479
. 10.1016/j.jngse.2015.06.040
6.
Austbø
,
B.
, and
Gundersen
,
T.
,
2015
, “
Optimization of a Single Expander LNG Process
,”
Energy Procedia
,
64
(
C
), pp.
63
72
. 10.1016/j.egypro.2015.01.009
7.
Lin
,
W.
,
Huang
,
M.
,
He
,
H.
, and
Gu
,
A.
,
2009
, “
A Transcritical CO2 Rankine Cycle With LNG Cold Energy Utilization and Liquefaction of CO2 in Gas Turbine Exhaust
,”
ASME J. Energy Resour. Technol.
,
131
(
4
), p.
042201
. 10.1115/1.4000176
8.
Widiyanto
,
A.
,
Kato
,
S.
, and
Maruyama
,
N.
,
2002
, “
A LCA/LCC Optimized Selection of Power Plant System With Additional Facilities Options
,”
ASME J. Energy Resour. Technol.
,
124
(
4
), pp.
290
299
. 10.1115/1.1507329
9.
Gurgenci
,
H.
, and
Aminossadati
,
S. M.
,
2009
, “
Investigating the Use of Methane as Diesel Fuel in Off-Road Haul Road Truck Operations
,”
ASME J. Energy Resour. Technol.
,
131
(
3
), pp.
032202
. 10.1115/1.3185350
10.
He
,
T.
,
Karimi
,
I. A.
, and
Ju
,
Y.
,
2018
, “
Review on the Design and Optimization of Natural Gas Liquefaction Processes for Onshore and Offshore Applications
,”
Chem. Eng. Res. Des.
,
132
, pp.
89
114
. 10.1016/j.cherd.2018.01.002
11.
Castillo
,
L.
, and
Dorao
,
C. A.
,
2010
, “
Influence of the Plot Area in an Economical Analysis for Selecting Small Scale LNG Technologies for Remote Gas Production
,”
J. Nat. Gas Sci. Eng.
,
2
(
6
), pp.
302
309
. 10.1016/j.jngse.2010.07.001
12.
Austbø
,
B.
,
Løvseth
,
S. W.
, and
Gundersen
,
T.
,
2014
, “
Annotated Bibliography—Use of Optimization in LNG Process Design and Operation
,”
Comput. Chem. Eng.
,
71
, pp.
391
414
. 10.1016/j.compchemeng.2014.09.010
13.
Yin
,
Q. S.
,
Li
,
H. Y.
,
Fan
,
Q. H.
, and
Jia
,
L. X.
,
2008
, “
Economic Analysis of Mixed-Refrigerant Cycle and Nitrogen Expander Cycle in Small Scale Natural Gas Liquefier
,”
AIP Conf. Proc.
,
985
(
2008
), pp.
1159
1165
. 10.1063/1.2908467
14.
Mokarizadeh Haghighi Shirazi
,
M.
, and
Mowla
,
D.
,
2010
, “
Energy Optimization for Liquefaction Process of Natural Gas in Peak Shaving Plant
,”
Energy
,
35
(
7
), pp.
2878
2885
. 10.1016/j.energy.2010.03.018
15.
He
,
T.
, and
Ju
,
Y.
,
2014
, “
A Novel Process for Small-Scale Pipeline Natural Gas Liquefaction
,”
Appl. Energy
,
115
, pp.
17
24
. 10.1016/j.apenergy.2013.11.016
16.
He
,
T.
, and
Ju
,
Y.
,
2014
, “
A Novel Conceptual Design of Parallel Nitrogen Expansion Liquefaction Process for Small-Scale LNG (Liquefied Natural Gas) Plant in Skid-Mount Packages
,”
Energy
,
75
, pp.
349
359
. 10.1016/j.energy.2014.07.084
17.
Yuan
,
Z.
,
Cui
,
M.
,
Xie
,
Y.
, and
Li
,
C.
,
2014
, “
Design and Analysis of a Small-Scale Natural Gas Liquefaction Process Adopting Single Nitrogen Expansion with Carbon Dioxide Pre-Cooling
,”
Appl. Therm. Eng.
,
64
(
1–2
), pp.
139
146
. 10.1016/j.applthermaleng.2013.12.011
18.
Aslambakhsh
,
A. H.
,
Moosavian
,
M. A.
,
Amidpour
,
M.
,
Hosseini
,
M.
, and
AmirAfshar
,
S.
,
2018
, “
Global Cost Optimization of a Mini-Scale Liquefied Natural Gas Plant
,”
Energy
,
148
, pp.
1191
1200
. 10.1016/j.energy.2018.01.127
19.
Swaney
,
R. E.
, and
Grossmann
,
I. E.
,
1985
, “
An Index for Operational Flexibility in Chemical Process Design
,”
AlChE J.
,
31
(
4
), pp.
621
630
. 10.1002/aic.690310412
20.
Swaney
,
R. E.
, and
Grossmann
,
I. E.
,
1985
, “
An Index for Operational Flexibility in Chemical Process Design
,”
31
(
4
), pp.
631
641
.
21.
Halemane
,
K. P.
, and
Grossmann
,
I. E.
,
1983
, “
Optimal Process Design Under Uncertainty
,”
AIChE J.
,
29
(
3
), pp.
425
433
. 10.1002/aic.690290312
22.
Rogers
,
A.
, and
Ierapetritou
,
M.
,
2015
, “
Feasibility and Flexibility Analysis of Black-Box Processes Part 2 : Surrogate-Based Flexibility Analysis
,”
Chem. Eng. Sci.
,
137
, pp.
1005
1013
. 10.1016/j.ces.2015.06.026
23.
Walas
,
S. M.
,
1990
,
Chemical Process Equipment-Selection and Design
,
Butterworth-Heinemann
,
Washington
.
24.
Skaugen
,
G.
,
Walnum
,
H. T.
,
Hammer
,
M.
,
Wahl
,
P. E.
,
Wilhelmsen
,
O.
, and
Kolsaker
,
K.
,
2013
, “
Design and Optimization of Heat Exchangers in Processes Used for Liquefaction of Natural Gas
,”
Int. Conf. Appl. Energy
, pp.
1
9
.
25.
Skaugen
,
G.
,
Hammer
,
M.
,
Wahl
,
P. E.
, and
Wilhelmsen
,
T.
,
2015
, “
Constrained Non-Linear Optimisation of a Process for Liquefaction of Natural Gas Including a Geometrical and Thermo-Hydraulic Model of a Compact Heat Exchanger
,”
Comput. Chem. Eng.
,
73
, pp.
102
115
. 10.1016/j.compchemeng.2014.12.002
26.
Watson
,
H. A. J.
,
Vikse
,
M.
,
Gundersen
,
T.
, and
Barton
,
P. I.
,
2018
, “
Optimization of Single Mixed-Refrigerant Natural Gas Liquefaction Processes Described by Nondifferentiable Models
,”
Energy
,
150
, pp.
860
876
. 10.1016/j.energy.2018.03.013
27.
Aspelund
,
A.
,
Gundersen
,
T.
,
Myklebust
,
J.
,
Nowak
,
M. P.
, and
Tomasgard
,
A.
,
2010
, “
An Optimization-Simulation Model for a Simple LNG Process
,”
Comput. Chem. Eng.
,
34
(
10
), pp.
1606
1617
. 10.1016/j.compchemeng.2009.10.018
28.
Lin
,
W.
,
Gao
,
T.
,
Gu
,
A.
, and
Gu
,
M.
,
2010
, “
CBM Nitrogen Expansion Liquefaction Processes Using Residue Pressure of Nitrogen From Adsorption Separation
,”
ASME J. Energy Resour. Technol.
,
132
(
3
), p.
032501
. 10.1115/1.4001799
29.
Dowling
,
A. W.
, and
Biegler
,
L. T.
,
2015
, “
A Framework for Efficient Large Scale Equation-Oriented Flowsheet Optimization
,”
Comput. Chem. Eng.
,
72
, pp.
3
20
. 10.1016/j.compchemeng.2014.05.013
30.
Kamath
,
R. S.
,
Biegler
,
L. T.
, and
Grossmann
,
I. E.
,
2010
, “
An Equation-Oriented Approach for Handling Thermodynamics Based on Cubic Equation of State in Process Optimization
,”
Comput. Chem. Eng.
,
34
(
12
), pp.
2085
2096
. 10.1016/j.compchemeng.2010.07.028
31.
Tak
,
K.
,
Kwon
,
H.
,
Park
,
J.
,
Cho
,
J. H.
, and
Moon
,
I.
,
2018
, “
A Multistream Heat Exchanger Model With Enthalpy Feasibility
,”
Comput. Chem. Eng.
,
115
, pp.
81
88
. 10.1016/j.compchemeng.2018.03.023
32.
Seider
,
W. D.
,
Lewin
,
D. R.
,
Seader
,
J. D.
,
Widagdo
,
S.
,
Gani
,
R.
, and
Ng
,
K. M.
,
2017
,
Product and Process Design Principles: Synthesis, Analysis, and Evaluation
,
Wiley
,
New York
.
33.
Chemical Engineering
,
2019
, “
Chemical Engineering Essentials for the CPI Professional
,” https://www.chemengonline.com/, Accessed 4 March 2019.
34.
Chen
,
L.
, and
MacDonald
,
E.
,
2017
, “
Wind Farm Layout Sensitivity Analysis and Probabilistic Model of Landowner Decisions
,”
ASME J. Energy Resour. Technol.
,
139
(
3
), p.
031202
. 10.1115/1.4035423
35.
Beyhaghi
,
S.
, and
Amano
,
R. S.
,
2019
, “
Multivariable Analysis of Aerodynamic Forces on Slotted Airfoils for Wind Turbine Blades
,”
ASME J. Energy Resour. Technol.
,
141
(
5
), p.
051214
. 10.1115/1.4042914
36.
Bussieck
,
M. R.
, and
Meeraus
,
A.
,
2004
, “General Algebraic Modeling System (GAMS),”
Modeling Languages in Mathematical Optimization
,
Springer
,
New York
, pp.
137
157
.
37.
Drud
,
A. S.
,
1994
, “
CONOPT—A Large-Scale GRG Code
,”
ORSA J. Comput.
,
6
(
2
), pp.
207
216
. 10.1287/ijoc.6.2.207
You do not currently have access to this content.