Abstract

This paper presents the study on the effect of different heating rates on the pyrolysis and gasification process of the chicken manure. The obtained results are shown by the extent of reaction, the kinetics of the reaction, and differential thermal analysis. In total, 24 cases were carried out; eight heating rates with three different gas agents each. The results show that when using nitrogen or carbon dioxide as gas agents, the reactions were endothermic. Consequently, the energy must be supplied in terms of heating to sustain the reaction. Furthermore, the air gasification was exothermic, which means that the reaction can be sustained without external heating, where the self-ignition was observed between 450 °C–600 °C. The thermal degradation of the three main components of the chicken manure was obtained. The pyrolysis process was divided into two regions at 360 °C and the order of reaction of five for both regions. For the gasification process, it was observed that carbon dioxide had the most complicated mechanism with four stages. Finally, it is recommended to use the lowest heating rate to allow a quasi-equilibrium state through slow heating. Consequently, the delay in response or any transient error can be avoided as they are the main reason for measurement errors. These chemical kinetic parameters can be used in the future for the chicken manure simulation using the order of reaction mechanism for solid-state gasification.

References

1.
Straub
,
D
,
1977
,
A Hot Issue-Chicken Manure. Tilth producers Quarterly. A Journal of Organic and Sustainable Agriculture
.
United States Department of Agriculture (USDA) (1995). Laboratory Methods for Soil and Foliar Analyses in Long-Term Environment Monitory Pograms. EPA/600/R-95/077
.
2.
Omiti
,
J. M.
,
Freeman
,
H. A.
,
Kaguongo
,
W.
, and
Bett
,
C.
,
1999
, “
Soil Fertility Maintenance in Eastern Kenya: Current Practices, Constraints, and Opportunities
,”
CARMASAK Working Paper No. 1.KARI/ICRISAT, Kenya
.
3.
Clay
,
D.C.
,
Kelly
,
V.
,
Mpyisi
,
E.
, and
Reardon
,
T.
,
2002
, “Input use and Conservation Investments Among Farm Households in Rwanda: Patterns and Determinants,”
Natural Resources Management in African Agriculture: Understanding and Improving Current Practices
,
Barrett
,
Place
, and
Aboud
, eds.,
CABI Publishing
,
Oxon and New York
, pp.
103
114
.
4.
Heathman
,
G. C.
,
Sharpley
,
A. N.
,
Smith
,
S. J.
, and
Robinson
,
J. S.
,
1995
, “
Land Application of Poultry Litter and Water Quality in Oklahoma U.S.A
,”
Fert. Res.
,
40
(
3
), pp.
165
173
. 10.1007/BF00750462
5.
Haapapuro
,
E. R.
,
Barnard
,
N. D.
, and
Simon
,
M.
,
1997
, “
Review—Animal Waste Used as Livestock Feed: Dangers to Human Health
,”
Prev. Med.
,
26
(
5
), pp.
599
602
. 10.1006/pmed.1997.0220
6.
Li
,
Z.
, and
Shuman
,
L. M.
,
1997
, “
Mobility of Zn, Cd and Pb in Soils as Affected by Poultry Litter Extract—I. Leaching is Soil Columns
,”
Environ. Pollut.
,
95
(
2
), pp.
219
226
. 10.1016/S0269-7491(96)00077-2
7.
Dalólio
,
F. S.
,
da Silva
,
J. N.
,
de Oliveira
,
A. C. C.
,
Tinôco
,
I. D. F. F.
,
Barbosa
,
R. C.
,
de Oliveira Resende
,
M.
,
Albino
,
L. F. T.
, and
Coelho
,
S. T.
,
2017
, “
Poultry Litter as Biomass Energy: A Review and Future Perspectives
,”
Renewable Sustainable Energy Rev.
,
76
(
C
), pp.
941
949
. 10.1016/j.rser.2017.03.104
8.
Billen
,
P.
,
Costa
,
J.
,
Van der Aa
,
L.
,
Van Caneghem
,
J.
, and
Vandecasteele
,
C.
,
2015
, “
Electricity From Poultry Manure: A Cleaner Alternative to Direct Land Application
,”
J. Clean. Prod.
,
96
, pp.
467
475
. 10.1016/j.jclepro.2014.04.016
9.
Florin
,
N. H.
,
Maddocks
,
A. R.
,
Wood
,
S.
, and
Harris
,
A. T.
,
2019
, “
High-Temperature Thermal Destruction of Poultry Derived Wastes for Energy Recovery in Australia
,”
Waste Manag.
,
24
, pp.
1399
1408
. 10.1016/j.wasman.2008.10.002
10.
Salman
,
C. A.
,
Schwede
,
S.
,
Thorin
,
E.
, and
Yan
,
J.
,
2017
, “
Predictive Modelling and Simulation of Integrated Pyrolysis and Anaerobic Digestion Process
,”
Energy Procedia
,
105
, pp.
850
857
. 10.1016/j.egypro.2017.03.400
11.
Demirbas
,
A.
,
2007
, “
The Influence of Temperature on the Yields of Compounds Existing in Bio-Oils Obtained From Biomass Samples via Pyrolysis
,”
Fuel Process. Technol.
,
88
(
6
), pp.
591
597
. 10.1016/j.fuproc.2007.01.010
12.
Maschio
,
G.
,
Koufopanos
,
C.
, and
Lucchesi
,
A.
,
1992
, “
Pyrolysis, a Promising Route for Biomass Utilization
,”
Bioresour. Technol.
,
42
(
3
), pp.
219
231
. 10.1016/0960-8524(92)90025-S
13.
Marsh
,
R.
,
Hewlett
,
S.
,
Griffiths
,
T.
, and
Williams
,
K.
,
2007
, “
Advanced Thermal Treatment for Solid Waste—a Waste Manager’s Guide
,”
Proceedings of the 22nd International Conference on Solid Waste Management and Technology
,
Philadelphia, PA
,
Mar. 18–21
, pp.
548
557
.
14.
Demirbas
,
A.
,
2001
, “
Biomass Resource Facilities and Biomass Conversion Processing for Fuels and Chemicals
,”
Energy Convers. Manage.
,
42
(
11
), pp.
1357
1378
. 10.1016/S0196-8904(00)00137-0
15.
Davalos
,
J. Z.
,
Roux
,
M. V.
, and
Jimenez
,
P.
,
2002
, “
Evaluation of Poultry Litter as a Feasible Fuel
,”
Thermochim. Acta
,
394
(
1–2
), pp.
261
266
. 10.1016/S0040-6031(02)00256-3
16.
Junga
,
R.
,
Knauer
,
W.
,
Niemiec
,
P.
, and
Tańczuk
,
M.
,
2017
, “
Experimental Tests of Co-combustion of Laying Hens Manure With Coal by Using Thermogravimetric Analysis
,”
Renewable Energy
,
111
, pp.
245
255
. 10.1016/j.renene.2017.03.099
17.
Beagle
,
E.
,
1978
,
Rice Husk Conversion to Energy
,
Agricultural Services Bulletin 31, Food and Agricultural Organization
,
Rome
.
18.
Kaupp
,
A.
,
1984
,
Gasification of Rice Hulls, Theory and Praxis
,
Friedrich Vieweg and Sohn
,
Braunschweig
.
19.
Bridgwater
,
A. V.
,
1989
, “Pyrolysis, Gasification and Liquefaction Technologies,”
Pyrolysis Gasification
,
G. L.
Ferrero
,
K.
Maniatis
,
A.
Buekens
, and
A. V.
Bridgwater
, eds.,
Elsevier
,
Amsterdam
, p.
198
.
20.
Ahiduzzaman
,
M.
, and
Islam
,
A. K. M. S.
,
2015
, “
Thermo-Gravimetric and Kinetic Analysis of Different Varieties of Rice Husk
,”
Procedia Eng.
,
105
, pp.
646
651
. 10.1016/j.proeng.2015.05.043
21.
Hossain
,
M. S.
,
Islam
,
M. R.
,
Rahman
,
M. S.
,
Kader
,
M. A.
, and
Haniu
,
H.
,
2017
, “
Biofuel From Co-pyrolysis of Solid Tire Waste and Rice Husk
,”
Energy Procedia
,
110
, pp.
453
458
. 10.1016/j.egypro.2017.03.168
22.
Costa
,
P.
,
Pinto
,
F.
,
Miranda
,
M.
,
André
,
R.
, and
Rodrigues
,
M.
,
2014
, “
Study of the Experimental Conditions of the Co-pyrolysis of Rice Husk and Plastic Wastes
,”
Chem. Eng. Trans.
,
39
(
Special Issue
), pp.
1639
1644
. 10.3303/CET1439274
23.
Ng
,
W. C.
,
You
,
S.
,
Ling
,
R.
,
Gin
,
K. Y.-H.
,
Dai
,
Y.
, and
Wang
,
C.-H.
,
2017
, “
Co-gasification of Woody Biomass and Chicken Manure: Syngas Production, Biochar Reutilization, and Cost-Benefit Analysis
,”
Energy
,
139
, pp.
732
742
.10.1016/j.energy.2017.07.165
24.
Li
,
Y.
,
Zhang
,
R.
,
He
,
Y.
,
Zhang
,
C.
,
Liu
,
X.
,
Chen
,
C.
, and
Liu
,
G.
,
2014
, “
Anaerobic Co-digestion of Chicken Manure and Corn Stover in Batch and Continuously Stirred Tank Reactor (CSTR)
,”
Bioresour. Technol.
,
156
, pp.
342
347
. 10.1016/j.biortech.2014.01.054
25.
Hussein
,
M. S.
,
Burra
,
K. G.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2017
, “
Temperature and Gasifying Media Effects on Chicken Manure Pyrolysis and Gasification
,”
Fuel
,
202
, pp.
36
45
. 10.1016/j.fuel.2017.04.017
26.
Burra
,
K. G.
,
Hussein
,
M. S.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2016
, “
Syngas Evolutionary Behavior During Chicken Manure Pyrolysis and air Gasification
,”
Appl. Energy
,
181
, pp.
408
415
. 10.1016/j.apenergy.2016.08.095
27.
Hussein
,
M. S.
,
Burra
,
K. G.
,
Amano
,
R. S.
, and
Gupta
,
A. K.
,
2017
, “
Effect of Oxygen Addition in Steam Gasification of Chicken Manure
,”
Fuel
,
189
, pp.
428
435
. 10.1016/j.fuel.2016.11.005
28.
Tańczuk
,
M.
,
Junga
,
R.
,
Kolasa-Więcek
,
A.
, and
Niemiec
,
P.
,
2019
, “
Assessment of the Energy Potential of Chicken Manure in Poland
,”
Energies
,
12
(
7
), p.
1244
. 10.3390/en12071244
29.
Atienza-Martínez
,
M.
,
Ábrego
,
J.
,
Gea
,
G.
, and
Marías
,
F.
,
2020
, “
Pyrolysis of Dairy Cattle Manure: Evolution of Char Characteristics
,”
J. Anal. Appl. Pyrolysis
,
145
. 10.1016/j.jaap.2019.104724
30.
White
,
J. E.
,
Catallo
,
W. J.
, and
Legendre
,
B. L.
,
2011
, “
Biomass Pyrolysis Kinetics: A Comparative Critical Review With Relevant Agricultural Residue Case Studies
,”
J. Anal. Appl. Pyrolysis
,
91
(
1
), pp.
1
33
. 10.1002/chin.201131265
31.
Phyllis2, Database for Biomass and Waste, 2015
, https://www.ecn.nl/phyllis2/Biomass/View/3501
32.
Yang
,
H.
,
2007
, “
Characteristics of Hemicellulose, Cellulose and Lignin Pyrolysis
,”
Fuel
,
86
(
12
13
), pp.
1781
1788
. 10.1016/j.fuel.2006.12.013
33.
Poletto
,
M.
,
Dettenborn
,
J.
,
Pistor
,
V.
,
Zeni
,
M.
, and
Zattera
,
A. J.
,
2010
, “
Materials Produced From Plant Biomass: Part I: Evaluation of Thermal Stability and Pyrolysis of Wood
,”
Mater. Res.
,
13
(
3
), pp.
375
379
. 10.1590/S1516-14392010000300016
You do not currently have access to this content.