Abstract

Ejector expansion refrigeration cycle with reference to the constant pressure mixing theory is investigated to display the effects of the liquid–vapor separator efficiency on the performance, entrainment ratio, and area ratio at various operation conditions. Reversible ejector assumption is used for the highest theoretical performance limit, whereas efficiency of the liquid–vapor separator and all ejector components is added to the model to calculate more realistic performance improvement potentials. R1234yf and R1234ze(E) having low global warming potential values are used in the analyses. Zero-dimensional thermodynamic models are constructed applying the conservation equations between the inlets and outlets of the refrigeration cycle and ejector components. Percentage performance decrease is higher when the mixing section and the separator efficiency is added to the model at higher condenser temperatures compared with the lower evaporator temperatures according to the investigated operation ranges. Vapor and liquid separation efficiency affects not only the performance but also the design of the ejector although it is an external component since it has influence on the area ratio and entrainment ratio. Finally, the difference between the percentage performance improvement of the reversible ejector cycle and the realistic ejector cycle including the separator and ejector components efficiencies is as high as 35% at the highest investigated condenser temperature for R1234yf.

References

1.
REGULATION (EU)
,
No 517/2014 of the European Parliament and of the Council of 16 April 2014 on Fluorinated Greenhouse Gases and Repealing Regulation (EC) No 842/2006
.
Off. J. Eur. Union
,
2014
.
2.
McLinden
,
M. O.
,
Kazakov
,
A. F.
,
Brown
,
J. S.
, and
Domanski
,
P. A.
,
2014
, “
A Thermodynamic Analysis of Refrigerants: Possibilities and Tradeoffs for Low-GWP Refrigerants
,”
Int. J. Refrig.
,
38
, pp.
80
92
. 10.1016/j.ijrefrig.2013.09.032
3.
ANSI/ASHRAE Standard 34-2010 ASHRAE
,
2010
,
Designation and Safety Classification of Refrigerants
,
American Society of Heating, Refrigerating, and Air-Conditioning Engineers, Inc
.,
Atlanta, GA
.
4.
Atmaca
,
A. U.
,
Erek
,
A.
, and
Ekren
,
O.
,
2019
, “
Impact of the Mixing Theories on the Performance of Ejector Expansion Refrigeration Cycles for Environmentally-Friendly Refrigerants
,”
Int. J. Refrig.
,
97
, pp.
211
225
. 10.1016/j.ijrefrig.2018.09.013
5.
Calm
,
J. M.
,
2012
, “
Refrigerant Transitions…Again
,”
2012 ASHRAE/NIST Refrigerants Conference
,
Gaithersburg, MD
,
Oct. 29–30
.
6.
Molés
,
F.
,
Navarro-Esbrí
,
J.
,
Peris
,
B.
,
Mota-Babiloni
,
A.
, and
Barragán-Cervera
,
A.
,
2014
, “
Theoretical Energy Performance Evaluation of Different Single Stage Vapour Compression Refrigeration Configurations Using R1234yf and R1234ze(E) as Working Fluids
,”
Int. J. Refrig.
,
44
, pp.
141
150
. 10.1016/j.ijrefrig.2014.04.025
7.
Lawrence
,
N.
, and
Elbel
,
S.
,
2015
, “
Analyses of Two-Phase Ejector Performance Metrics and Comparison of R134a and CO2 Ejector Performance
,”
Sci. Technol. Built Environ.
,
21
, pp.
515
525
. 10.1080/23744731.2015.1030327
8.
Dutton
,
J. C.
, and
Carroll
,
B. F.
,
1983
, “
Optimized Ejector-Diffuser Design Procedure for Natural Gas Vapor Recovery
,”
ASME J. Energy Resour. Technol.
,
105
(
3
), pp.
388
393
. 10.1115/1.3230934
9.
Elbel
,
S.
, and
Hrnjak
,
P.
,
2008
, “
Ejector Refrigeration: An Overview of Historical and Present Developments With an Emphasis on Air-Conditioning Applications
,”
International Refrigeration and Air Conditioning Conference
,
Purdue University
,
West Lafayette, IN
.
10.
Kornhauser
,
A. A.
,
1990
, “
The use of an Ejector as a Refrigerant Expander
,”
International Refrigeration and Air Conditioning Conference
,
Purdue University
,
West Lafayette, IN
.
11.
Ersoy
,
H. K.
, and
Bilir
,
N.
,
2012
, “
Performance Characteristics of Ejector Expander Transcritical CO2 Refrigeration Cycle
”,
Proc. Inst. Mech. Eng.
,
226
, pp.
623
635
. 10.1177/0957650912446547
12.
Liu
,
F.
,
2014
, “
Review on Ejector Efficiencies in Various Ejector Systems
,”
International Refrigeration and Air Conditioning Conference
,
Purdue University
,
West Lafayette, IN
.
13.
Alazazmeh
,
A. J.
,
Mokheimer
,
E. M. A.
,
Khaliq
,
A.
, and
Qureshi
,
B. A.
,
2019
, “
Performance Analysis of a Solar-Powered Multi-Effect Refrigeration System
,”
ASME J. Energy Resour. Technol.
,
141
, p.
7
. 10.1115/1.4042240
14.
Elbel
,
S.
, and
Lawrence
,
N.
,
2016
, “
Review of Recent Developments in Advanced Ejector Technology
,”
Int. J. Refrig.
,
62
, pp.
1
18
. 10.1016/j.ijrefrig.2015.10.031
15.
Sumeru
,
K.
,
Nasution
,
H.
, and
Ani
,
F. N.
,
2012
, “
A Review on Two-Phase Ejector as an Expansion Device in Vapor Compression Refrigeration Cycle
,”
Renewable Sustainable Energy Rev.
,
16
, pp.
4927
4937
. 10.1016/j.rser.2012.04.058
16.
Li
,
D. Q.
, and
Groll
,
E. A.
,
2005
, “
Transcritical CO2 Refrigeration Cycle With Ejector-Expansion Device
,”
Int. J. Refrig.
,
28
, pp.
766
773
. 10.1016/j.ijrefrig.2004.10.008
17.
Seçkin
,
C.
,
2017
, “
Parametric Analysis and Comparison of Ejector Expansion Refrigeration Cycles With Constant Area and Constant Pressure Ejectors
,”
ASME J. Energy Resour. Technol.
,
139
, p.
4
. 10.1115/1.4036383
18.
Bilir
,
N.
, and
Ersoy
,
H. K.
,
2009
, “
Performance Improvement of the Vapor Compression Refrigeration Cycle by a Two-Phase Constant Area Ejector
,”
Int. J. Energy Res.
,
33
, pp.
469
480
. 10.1002/er.1488
19.
Ersoy
,
H. K.
, and
Bilir
,
N.
,
2010
, “
The Influence of Ejector Component Efficiencies on Performance of Ejector Expander Refrigeration Cycle and Exergy Analyses
,”
Int. J. Exergy
,
7
, pp.
425
438
. 10.1504/IJEX.2010.033412
20.
Li
,
H.
,
Cao
,
F.
,
Bu
,
X.
,
Wang
,
L.
, and
Wang
,
X.
,
2014
, “
Performance Characteristics of R1234yf Ejector-Expansion Refrigeration Cycle
,”
Appl. Energy
,
121
, pp.
96
103
. 10.1016/j.apenergy.2014.01.079
21.
Lawrence
,
N.
,
2012
, “
Analytical and Experimental Investigation of Two-Phase Ejector Cycles Using Low-Pressure Refrigerants
,” M.Sc. thesis,
Mechanical Engineering Department, University of Illinois at Urbana-Champaign
,
Urbana, IL
.
22.
Wang
,
F.
,
Li
,
D. Y.
, and
Zhou
,
Y.
,
2016
, “
Analysis for the Ejector Used as Expansion Valve in Vapor Compression Refrigeration Cycle
,”
Appl. Therm. Eng.
,
96
, pp.
576
582
. 10.1016/j.applthermaleng.2015.11.095
23.
Lawrence
,
N.
, and
Elbel
,
S.
,
2012
, “
Experimental and Analytical Investigation of Automotive Ejector Air-Conditioning Cycles Using Low-Pressure Refrigerants
,”
International Refrigeration and Air Conditioning Conference
,
Purdue University
,
West Lafayette, IN
.
24.
Elbel
,
S.
,
Reichle
,
M.
,
Bowers
,
C.
, and
Hrnjak
,
P.
,
2012
, “
Integration of a Two-Phase Ejector Into a Compact, Lightweight Unitary-Type Air-Conditioner Using R744 for Energy Efficient Operation in Hot Climates
,”
10th IIR Gustav Lorentzen Conference on Natural Refrigerants
,
Delft, The Netherlands
, Paper 180.
25.
Nakagawa
,
M.
,
Marasigan
,
A. R.
, and
Matsukawa
,
T.
,
2011
, “
Experimental Analysis on the Effect of Internal Heat Exchangers in Transcritical CO2 Refrigeration Cycle With Two-Phase Ejector
,”
Int. J. Refrig.
,
34
, pp.
1577
1586
. 10.1016/j.ijrefrig.2010.03.007
26.
Chen
,
J.
,
Havtun
,
H.
, and
Palm
,
B.
,
2015
, “
Conventional and Advanced Exergy Analysis of an Ejector Refrigeration System
,”
Appl. Energy
,
144
, pp.
139
151
. 10.1016/j.apenergy.2015.01.139
27.
Bai
,
T.
,
Yu
,
J.
, and
Yan
,
G.
,
2016
, “
Advanced Exergy Analyses of an Ejector Expansion Transcritical CO2 Refrigeration System
,”
Energy Convers. Manage.
,
126
, pp.
850
861
. 10.1016/j.enconman.2016.08.057
28.
McGovern
,
R. K.
,
Narayan
,
G. P.
, and
Lienhard
,
V. J. H.
,
2012
, “
Analysis of Reversible Ejectors and Definition of an Ejector Efficiency
,”
Int. J. Therm. Sci.
,
54
, pp.
153
166
. 10.1016/j.ijthermalsci.2011.11.003
29.
Chunnanond
,
K.
, and
Aphornratana
,
S.
,
2004
, “
Ejectors: Applications in Refrigeration Technology
,”
Renewable Sustainable Energy Rev.
,
8
, pp.
129
155
. 10.1016/j.rser.2003.10.001
30.
Atmaca
,
A. U.
,
Erek
,
A.
, and
Ekren
,
O.
,
2018
, “
Thermodynamic Assessment of Ejector Expansion Refrigeration Cycle Under Reversible Ejector Assumption
,”
7th Global Conference on Global Warming (GCGW-2018)
,
İzmir, Turkey
,
June 24–28
, pp.
711
717
.
31.
Klein
,
S. A.
,
2017
,
Engineering Equation Solver (EES), Academic Professional V10.294, F-Chart Software
,
Madison
,
WI
.
32.
Ersoy
,
H. K.
, and
Sag
,
N. B.
,
2014
, “
Preliminary Experimental Results on the R134a Refrigeration System Using a Two-Phase Ejector as an Expander
,”
Int. J. Refrig.
,
43
, pp.
97
110
. 10.1016/j.ijrefrig.2014.04.006
33.
Liu
,
F.
,
Groll
,
E. A.
, and
Li
,
D.
,
2012
, “
Investigation on Performance of Variable Geometry Ejectors for CO2 Refrigeration Cycles
,”
Energy
,
45
, pp.
829
839
. 10.1016/j.energy.2012.07.008
34.
Hassanain
,
M.
,
Elgendy
,
E.
, and
Fatouh
,
M.
,
2015
, “
Ejector Expansion Refrigeration System: Ejector Design and Performance Evaluation
,”
Int. J. Refrig.
,
58
, pp.
1
13
. 10.1016/j.ijrefrig.2015.05.018
35.
Lemmon
,
E. W.
,
Huber
,
M. L.
, and
McLinden
,
M. O.
,
2013
, “
NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP
”, Version 9.1, National Institute of Standards and Technology, Standard Reference Data Program, Gaithersburg.
36.
Eames
,
I. W.
,
Aphornratana
,
S.
, and
Haider
,
H.
,
1995
, “
A Theoretical and Experimental Study of a Small-Scale Steam jet Refrigerator
,”
Int. J. Refrig.
,
18
, pp.
378
386
. 10.1016/0140-7007(95)98160-M
You do not currently have access to this content.