This work presents a theoretical thermodynamic study of a compression–absorption cascade refrigeration system using R134a and a lithium bromide–water solution as working fluids. First and second law of thermodynamics analyses were carried out in order to develop an advanced exergetic analysis, by splitting the total irreversibility and that of every component. The potential for improvement of the system is quantified, in the illustrated base-case 55.4% of the irreversibility is of avoidable nature and it could be reduced. The evaporator is the component that shows a significant potential for improvement, followed by the cascade heat exchanger, the compressor, and finally, the generator. The results of the advanced exergetic analysis can be very useful for future design and experimentation of these kinds of systems.

References

1.
Cimsit
,
C.
, and
Tekin-Ozturk
,
I.
,
2012
, “
Analysis of Compression–Absorption Cascade Refrigeration Cycles
,”
Appl. Therm. Eng.
,
40
, pp.
311
317
.
2.
Colorado
,
D.
, and
Velázquez
,
V. M.
,
2013
, “
Exergy Analysis of a Compression–Absorption Cascade System for Refrigeration
,”
Int. J. Energy Res.
,
37
(
14
), pp.
1851
1865
.
3.
Colorado
,
D.
, and
Rivera
,
W.
,
2015
, “
Performance Comparison Between a Conventional Vapor Compression and Compression-Absorption Single-Stage and Double-Stage Systems Used for Refrigeration
,”
Appl. Therm. Eng.
,
87
, pp.
273
285
.
4.
Cimsit
,
C.
,
Tekin-Ozturk
,
I.
, and
Kincay
,
O.
,
2015
, “
Thermoeconomic Optimization of LiBr/H2O-R134a Compression-Absorption Cascade Refrigeration Cycle
,”
Appl. Therm. Eng.
,
76
, pp.
105
115
.
5.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachwaha
,
S. S.
,
2015
, “
NLP Model Based Thermoeconomic Optimization of Vapor Compression-Absorption Cascaded Refrigeration System
,”
Energy Convers. Manage.
,
93
, pp.
49
62
.
6.
Jain
,
V.
,
Sachdeva
,
G.
, and
Kachwaha
,
S. S.
,
2015
, “
Energy, Exergy, Economic and Environmental (4E) Analyses Based Comparative Performance Study and Optimization of Vapor Compression-Absorption Integrated Refrigeration System
,”
Energy
,
91
, pp.
816
832
.
7.
Pandya
,
B.
,
Kumar
,
V.
,
Patel
,
J.
, and
Matawala
,
V. K.
,
2018
, “
Optimum Heat Source Temperature and Performance Comparison of LiCl-H2O and LiBr-H2O Type Solar Cooling System
,”
ASME J. Energy Resour. Technol.
,
140
(
5
), p.
051204
.
8.
Zhang
,
N.
,
Lior
,
N.
, and
Han
,
W.
,
2016
, “
Performance Study and Energy Saving Process Analysis of Hybrid Absorption-Compression Refrigeration Cycles
,”
ASME J. Energy Resour. Technol.
,
138
(
6
), p.
061603
.
9.
Gogoi
,
T. K.
,
2015
, “
Estimation of Operating Parameters of a Water–LiBr Vapor Absorption Refrigeration System Through Inverse Analysis
,”
ASME J. Energy Resour. Technol.
,
138
(
2
), p.
022002
.
10.
Jain
,
V.
,
Sachdeva
,
G.
,
Kachwaha
,
S. S.
, and
Patel
,
B.
,
2016
, “
Thermo-Economic and Environmental Analysis Based Multi-Objective Optimization of Vapor Compression-Absorption Cascaded Refrigeration System Using NSGA-II Technique
,”
Energy Convers. Manage.
,
113
, pp.
230
242
.
11.
Morosuk
,
T.
, and
Tsatsaronis
,
G.
,
2008
, “
A New Approach to the Exergy Analysis of Absorption Refrigeration Machines
,”
Energy
,
33
(
6
), pp.
890
907
.
12.
Gong
,
S.
, and
Goni-Boulama
,
K. G.
,
2014
, “
Parametric Study of an Absorption Refrigeration Machine Using Advanced Exergy Analysis
,”
Energy
,
76
, pp.
453
467
.
13.
Colorado
,
D.
,
2017
, “
Advanced Exergy Analysis Applied to a Single-Stage Heat Transformer
,”
Appl. Therm. Eng.
,
116
, pp.
584
596
.
14.
Lemmon
,
E. W.
, Huber, M. L., and McLinder, M. O.,
2007
, “
NIST Standard Reference, Database: Version 2.11
,” Gaithersburg, MA.
15.
McNeely
,
L. A.
,
1979
, “
Thermodynamics Properties of Aqueous Solutions of Lithium Bromide
,”
ASHRAE Trans.
,
85
, pp.
413
434
.
16.
Feuerecker
,
G.
,
Scharfe
,
J.
,
Greiterl
,
I.
,
Frank
,
C.
, and
Alefeld
,
G.
,
1993
, “
Measurements of Thermophysical Properties of Aqueous LiBr-Solutions at High Temperatures and Concentrations
,”
ASME Paper No. 74
.
17.
Kaita
,
Y.
,
2001
, “
Thermodynamic Properties of Lithium Bromide–Water Solutions at High Temperatures
,”
Int. J. Refrig.
,
24
(
5
), pp.
374
390
.
18.
Bhattacharyya
,
S.
,
Mukhopadhyay
,
S.
,
Kumar
,
A.
,
Khurana
,
R. K.
, and
Sarkar
,
J.
,
2005
, “
Optimization of a CO2-C3H8 Cascade System for Refrigeration and Heating
,”
Int. J. Refrig.
,
28
(
8
), pp.
1284
1292
.
You do not currently have access to this content.