Abstract

Distributed energy technology is an important developing direction of the future energy technology. This paper puts forward a distributed energy system named SOFC–GT–RC (solid oxide fuel cell–gas turbine–recovering carbon dioxide) with liquefied natural gas (LNG) as fuel and recovering carbon dioxide. In the system, the cold energy of LNG can not only cool the compressor inlet air to reduce the consumption of compressor work, but also to supply cold energy and to recover CO2. Based on the mathematical model of each part, the thermodynamic calculation model of the whole system is built by fortran, which is embedded in aspen plus. The results of calculation indicate the thermal efficiency and total power efficiency are 74.5% and 56.7% while the exergy efficiency is 61.8%. In addition, some operating parameters such as fuel utilization factor and fuel flow rate are selected. Based on these operating parameters, the new system thermodynamic performance is studied. The results point that this SOFC–GT–RC system fueled by LNG increases the total power and decreases waste of cold energy and the pollution of the environment, which would be an effective utilization style of energy in China's LNG satellite stations.

References

1.
Lin
,
W. S.
,
Zhang
,
N.
, and
Gu
,
A. Z.
,
2010
, “
LNG (Liquefied Natural Gas): a Necessary Part in China’s Future Energy Infrastructure
,”
Energy
,
35
(
11
), pp.
4383
4391
. 10.1016/j.energy.2009.04.036
2.
Kumar
,
S.
,
Kwon
,
H. T.
,
Choi
,
K. H.
,
Cho
,
J. H.
,
Lim
,
W.
, and
Moon
,
I.
,
2011
, “
Current Status and Future Projections of LNG Demand and Supplies: A Global Prospective
,”
Energy Policy
,
39
(
7
), pp.
4097
4104
. 10.1016/j.enpol.2011.03.067
3.
Ma
,
G.
,
Zhang
,
C.
, and
Zhao
,
L.
,
2017
, “
Analysis on Heat Transfer Effect of Air-Temperature Vaporizer in LNG Satellite Station
,”
Adv. Mech. Eng.
,
9
(
6
), pp.
1
11
. 10.1177/1687814017711856
4.
He
,
L.
,
Zhang
,
L.
,
Gao
,
W.
,
Yu
,
L.M.
,
Zhang
,
X.R.
,
Liu
,
Y.
, and
Wang
,
S.R.
,
2015
, “
Technology Study on the Cascade Utilization of LNG Cold Energy with Combination of Power Generation and Air Conditioning Refrigeration System
,”
Cryog. Supercond.
,
33
(
7
), pp.
11
15
.
5.
Lin
,
Y.
,
2013
,
The Research and Application of LNG Cold Energy Technology for Ice Storage Air Conditioning
,
South China University of Technology
,
Guangzhou, China
.
6.
Fani
,
M.
,
Niri
,
M. H.
, and
Joda
,
F.
,
2018
, “
A Simplified Dynamic Thermokinetic-Based Model of Wood Gasification Process
,”
Process Integr. Optim. Sustainability
,
2
(
15
), pp.
1
11
.
7.
Li
,
Bing-Fan
,
Pan
,
Z.
,
Zhang
,
G. Q.
, and
Shang
,
L.Y.
,
2014
, “
Recycling of Cold Energy During LNG Gasification
,”
Contemp. Chem. Ind.
,
43
(
11
), pp.
2378
2381
.
8.
Hua
,
Y.
,
Oliphant
,
M.
, and
Hu
,
E. J.
,
2016
, “
Development of Renewable Energy in Australia and China: A Comparison of Policies and Status
,”
Renewable Energy
,
85
, pp.
1044
1051
. 10.1016/j.renene.2015.07.060
9.
Shnaiderman
,
M.
, and
Keren
,
N.
,
2014
, “
Cogeneration Versus Natural Gas Steam Boiler: A Techno-Economic Model
,”
Appl. Energy
,
131
(
15
), pp.
128
138
. 10.1016/j.apenergy.2014.06.020
10.
Maraver
,
D.
,
Sin
,
A.
,
Royo
,
J.
, and
Sebastián
,
F.
,
2013
, “
Assessment of CCHP Systems Based on Biomass Combustion for Small-Scale Applications Through a Review of the Technology and Analysis of Energy Efficiency Parameters
,”
Appl. Energy
,
102
(
2
), pp.
1303
1313
. 10.1016/j.apenergy.2012.07.012
11.
Liu
,
M.
,
Shi
,
Y.
, and
Fang
,
F.
,
2012
, “
A New Operation Strategy for CCHP Systems With Hybrid Chillers
,”
Appl. Energy
,
95
(
2
), pp.
164
173
. 10.1016/j.apenergy.2012.02.035
12.
Jing
,
Y. Y.
,
Bai
,
H.
, and
Wang
,
J. J.
,
2012
, “
A Fuzzy Multi-Criteria Decision-Making Model for CCHP Systems Driven by Different Energy Sources
,”
Energy Policy
,
42
(
2
), pp.
286
296
. 10.1016/j.enpol.2011.11.085
13.
Mago
,
P. J.
, and
Chamra
,
L. M.
, “
Analysis and Optimization of CCHP Systems Based on Energy, Economical, and Environmental Considerations
,”
Energy Build.
,
41
(
10
), pp.
1099
1106
. 10.1016/j.enbuild.2009.05.014
14.
Xu
,
Q. H.
,
Zeng
,
A. D.
,
Wang
,
K.
, and
Jiang
,
L.
,
2016
, “
The Micro Energy Network has Been Used to Optimize the Economic Optimization Based on Hessian Interior Point Method
,”
Grid Technol.
,
40
(
6
), pp.
1657
1665
.
15.
Wu
,
D. W.
, and
Wang
,
R. Z.
,
2006
, “
Combined Cooling, Heating and Power: A Review. Progress in Energy and Combustion Science
,”
32
(
5
), pp.
459
495
. 10.1016/j.pecs.2006.02.001
16.
Olamaei
,
J.
, and
Nazari
,
M. E.
,
2018
, “
Economic Environmental Unit Commitment for Integrated CCHP-Thermal-Heat Only System With Considerations for Valve-Point Effect Based on a Heuristic Optimization Algorithm
,”
Energy
,
159
, pp.
737
750
. 10.1016/j.energy.2018.06.117
17.
Akkaya
,
A. V.
,
Sahin
,
B.
, and
Erdem
,
H. H.
,
2008
, “
An Analysis of SOFC/GT CHP System Based on Exergetic Performance Criteria
,”
Int. J. Hydrogen Energy
,
33
(
10
), pp.
2566
2577
. 10.1016/j.ijhydene.2008.03.013
18.
Lim
,
T. H.
,
Song
,
R. H.
,
Shin
,
D. R.
,
Yang
,
J. Il.
,
Jung
,
H.
,
Vinke
,
I. C.
, and
Yang
,
S. S.
,
2008
, “
Operating Characteristics of a 5 kW Class Anode-Supported Planar SOFC Stack for a Fuel Cell/Gas Turbine Hybrid System
,”
Int. J. Hydrogen Energy
,
33
(
3
), pp.
1076
1083
. 10.1016/j.ijhydene.2007.11.017
19.
Bao
,
C.
,
Shi
,
Y. X.
,
Croiset
,
E.
,
Li
,
C.
, and
Cai
,
N.
,
2010
, “
A Multi-Level Simulation Platform of Natural Gas Internal Reforming Solid Oxide Fuel Cell–Gas Turbine Hybrid Generation System: Part I. Solid Oxide Fuel Cell Model Library
,”
J. Power Sources
,
195
(
15
), pp.
4871
4892
. 10.1016/j.jpowsour.2010.01.078
20.
Burbank,
,
W.
, Jr.
,
Witmera
,
D.
, and
Holcomb
,
F.
,
2009
, “
Model of a Novel Pressurized Solid Oxide Fuel Cell Gas Turbine Hybrid Engine
,”
Power Sources
,
193
(
2
), pp.
656
564
. 10.1016/j.jpowsour.2009.04.004
21.
Zabihian
,
F.
, and
Fung
,
A. S.
,
2013
, “
Performance Analysis of Hybrid Solid Oxide Fuel Cell and Gas Turbine Cycle: Application of Alternative Fuels
,”
J. Energy. Convers. Manag.
,
76
, pp.
571
580
. 10.1016/j.enconman.2013.08.005
22.
Bakalis
,
D. P.
, and
Stamatis
,
A. G.
,
2012
, “
Full and Part Load Exergetic Analysis of a Hybrid Micro Gas Turbine Fuel Cell System Based on Existing Components
,”
J. Energy. Convers. Manag.
,
64
, pp.
213
221
. 10.1016/j.enconman.2012.04.004
23.
Petronilla
,
F.
,
Giuseppe D
,
L.
, and
Orlando
,
C.
,
2018
, “
Performance Analysis of a Solid Oxide Fuel Cell-Gasifier Integrated System in Co-Trigenerative Arrangement
,”
ASME J. Energy Resour. Technol.
,
140
(
9
), p.
092001
. 10.1115/1.4039872
24.
Sadeghi
,
S.
, and
Ameri
,
M.
,
2014
, “
Exergy Analysis of Photovoltaic Panels-Coupled Solid Oxide Fuel Cell and Gas Turbine-Electrolyzer Hybrid System
,”
ASME J. Energy Resour. Technol.
,
136
(
3
), p.
031201
. 10.1115/1.4026313
25.
Dumitrescu
,
A.
,
Lee
,
T. W.
, and
Roy
,
R. P.
,
2011
, “
Computational Model of a Hybrid Pressurized Solid Oxide Fuel Cell Generator/Gas Turbine Power Plant
,”
ASME J. Energy Resour. Technol.
,
133
(
1
), p.
012602
. 10.1115/1.4003707
26.
Lisbona
,
P.
, and
Romeo
,
L. M.
,
2008
, “
Enhanced Coal Gasification Heated by Unmixed Combustion Integrated With a Hybrid System of SOFC/GT
,”
Int. J. Hydrogen Energy
,
33
(
20
), pp.
5755
5764
. 10.1016/j.ijhydene.2008.06.031
27.
Martinez
,
A. S.
,
Brouwer
,
J.
, and
Samuelsen
,
G. S.
,
2015
, “
Comparative Analysis of SOFC–GT Freight Locomotive Fueled by Natural Gas and Diesel With Onboard Reformation
,”
Appl. Energy
,
148
, pp.
421
438
. 10.1016/j.apenergy.2015.01.093
28.
Calise
,
F.
,
d’Accadia
,
M. D.
,
Vanoli
,
L.
, and
von Spakovsky
,
M. R.
,
2007
, “
Full Load Synthesis/Design Optimization of a Hybrid SOFC-GT Power Plant
,”
Energy
,
32
(
4
), pp.
446
458
. 10.1016/j.energy.2006.06.016
29.
Zhao
,
H. B.
,
Jiang
,
T.
,
Yang
,
Q.
, and
Yang
,
W.
,
2015
, “
Research on the SOFC-CCHP System Process Schemes Fueled by Coke Oven Gas
,”
J. Eng. Therm. Phys.
,
36
(
8
), pp.
1626
1632
.
30.
Hou
,
Q. L.
,
Zhao
,
H. B.
, and
Yang
,
X. Y.
,
2018
, “
Thermodynamic Performance Study of the Integrated MR-SOFC-CCHP System
,”
Energy
,
150
(
150
), pp.
434
450
. 10.1016/j.energy.2018.02.105
31.
Ma
,
S. L.
,
Wang
,
J. F.
,
Yan
,
Z. Q.
,
Dai
,
Y.
, and
Lu
,
B.
,
2011
, “
Thermodynamic Analysis of a New Combined Cooling, Heat and Power System Driven by Solid Oxide Fuel Cell Based on Ammonia–Water Mixture
,”
J. Power Sources
,
196
(
20
), pp.
8463
8471
. 10.1016/j.jpowsour.2011.06.008
32.
Han
,
J. L.
, and
Zhao
,
Y.
,
2011
, “
Method Study on Reducing the City Gas Winter Summer Peak Valley Dissimilarity
,”
Energy Procedia
,
12
(
12
), pp.
886
896
. 10.1016/j.egypro.2011.10.117
33.
Khani
,
L.
,
Mahmoudi
,
S. M. S.
,
Chitsaz
,
A.
, and
Rosen
,
M. A.
,
2016
, “
Energy and Exergoeconomic Evaluation of a New Power/Cooling Cogeneration System Based on a Solid Oxide Fuel Cell
,”
Energy
,
94
, pp.
64
77
. 10.1016/j.energy.2015.11.001
34.
Komatsu
,
Y.
,
Kimijima
,
S.
, and
Szmyd
,
J. S.
,
2010
, “
Performance Analysis for the Part-Load Operation of a Solid Oxide Fuel Cell–Micro Gas Turbine Hybrid System
,”
Energy
,
35
(
2
), pp.
982
988
. 10.1016/j.energy.2009.06.035
35.
Zhang
,
X. Y.
,
2011
,
The Study of the Compound Power SOFC With Zero-CO2
,
North China Electric Power University
,
Beijing
.
You do not currently have access to this content.