The carbonate looping process using the reversible calcination/carbonation reaction of limestone is a promising way to reduce CO2 emissions of fossil fired power plants. This paper describes the concept of an indirectly heated version of this process in which heat pipes accomplish the heat transfer from an air-blown fluidized bed combustor to a bubbling fluidized bed calciner. It defines the calciner's specific heat demand which is a pendant to the heating value of coal. The dimensioning depends on the processes inside heat pipes as well as heat transfer of immersed heating surfaces. Experimental investigations in an electrically heated batch reactor with a similar pipe grid provide heat transfer coefficients under calcination conditions.
Issue Section:
Fuel Combustion
References
1.
Herzog
, H. J.
, 2001
, “What Future for Carbon Capture and Sequestration?
,” Environ. Sci. Technol.
, 35
(7
), pp. 148A
–153A
.2.
Martelli
, E.
, Kreutz
, T.
, and Consonni
, S.
, 2009
, “Comparison of Coal IGCC With and Without CO2 Capture and Storage: Shell Gasification With Standard vs. Partial Water Quench
,” Energy Procedia
, 1
(1
), pp. 607
–614
.3.
Zahra
, M. R. M. A.
, Fernandez
, E. S.
, and Goetheer
, E. L. V.
, 2011
, “Guidelines for Process Development and Future Cost Reduction of CO2 Post-Combustion Capture
,” Energy Procedia
, 4
, pp. 1051
–1057
.4.
Shimizu
, T.
, Hirama
, T.
, Hosoda
, H.
, Kitano
, K.
, Inagaki
, M.
, and Tejima
, K.
, 1999
, “A Twin Fluid-Bed Reactor for Removal of CO2 From Combustion Processes
,” Chem. Eng. Res. Des.
, 77
(1
), pp. 62
–68
.5.
Wang
, J.
, Anthony
, E. J.
, and Abanades
, J. C.
, 2004
, “Clean and Efficient Use of Petroleum Coke for Combustion and Power Generation
,” Fuel
, 83
(10
), pp. 1341
–1348
.6.
Abanades
, J. C.
, Anthony
, E. J.
, Wang
, J.
, and Oakey
, J. E.
, 2005
, “Fluidized Bed Combustion Systems Integrating CO2 Capture With CaO
,” Environ. Sci. Technol.
, 39
(8
), pp. 2861
–2866
.7.
Ströhle
, J.
, Galloy
, A.
, and Epple
, B.
, 2009
, “Feasibility Study on the Carbonate Looping Process for Post-Combustion CO2 Capture From Coal-Fired Power Plants
,” Energy Procedia
, 1
(1
), pp. 1313
–1320
.8.
Ströhle
, J.
, Lasheras
, A.
, Galloy
, A.
, and Epple
, B.
, 2009
, “Simulation of the Carbonate Looping Process for Post-Combustion CO2 Capture From a Coal-Fired Power Plant
,” Chem. Eng. Technol.
, 32
(3
), pp. 435
–442
.9.
Blamey
, J.
, Anthony
, E. J.
, Wang
, J.
, and Fennell
, P. S.
, 2010
, “The Calcium Looping Cycle for Large-Scale CO2 Capture
,” Prog. Energy Combust. Sci.
, 36
(2
), pp. 260
–279
.10.
Cormos
, C. C.
, and Petrescu
, L.
, 2014
, “Evaluation of Calcium Looping as Carbon Capture Option for Combustion and Gasification Power Plants
,” Energy Procedia
, 51
, pp. 154
–160
.11.
Epple
, B.
, and Seeber
, J.
, 2011
, “Verfahren und Einrichtung zur Abscheidung von CO2 aus Abgas
,” Patent No. EP2299176 A1.12.
Junk
, M.
, Reitz
, M.
, Ströhle
, J.
, and Epple
, B.
, 2013
, “Thermodynamic Evaluation and Cold Flow Model Testing of an Indirectly Heated Carbonate Looping Process
,” Chem. Eng. Technol.
, 36
(9
), pp. 1479
–1487
.13.
Hoeftberger
, D.
, and Karl
, J.
, 2013
, “Self-Fluidization in an Indirectly Heated Calciner
,” Chem. Eng. Technol.
, 36
(9
), pp. 1533
–1538
.14.
Reitz
, M.
, Junk
, M.
, Ströhle
, J.
, and Epple
, B.
, 2014
, “Design and Erection of a 300 kWth Indirectly Heated Carbonate Looping Test Facility
,” Energy Procedia
, 63
, pp. 2170
–2177
.15.
Hawthorne
, C.
, Trossmann
, M.
, Cifre
, P. G.
, Schuster
, A.
, and Scheffknecht
, G.
, 2009
, “Simulation of the Carbonate Looping Power Cycle
,” Energy Procedia
, 1
(1
), pp. 1387
–1394
.16.
Notz
, R. J.
, Tönnies
, I.
, McCann
, N.
, Scheffknecht
, G.
, and Hasse
, H.
, 2011
, “CO2 Capture for Fossil Fuel-Fired Power Plants
,” Chem. Eng. Technol.
, 34
(2
), pp. 163
–172
.17.
Kew
, P.
, and Reay
, D.
, 2006
, Heat Pipes: Theory, Design and Applications
, Butterworth-Heinemann
, Oxford, UK
.18.
V. D. I. Gesellschaft Verfahrenstechnik und Chemieingenieurwesen
, 2006
, VDI-Wärmeatlas
, Springer
, Berlin, Germany
.19.
Rodriguez
, N.
, Alonso
, M.
, Grasa
, G.
, and Abanades
, J. C.
, 2008
, “Heat Requirements in a Calciner of CaCO3 Integrated in a CO2 Capture System Using CaO
,” Chem. Eng. J.
, 138
(1–3
), pp. 148
–154
.20.
Sakadjian
, B. B.
, Iyer
, M. V.
, Gupta
, H.
, and Fan
, L.-S.
, 2007
, “Kinetics and Structural Characterization of Calcium-Based Sorbents Calcined Under Subatmospheric Conditions for the High-Temperature CO2 Capture Process
,” Ind. Eng. Chem. Res.
, 46
(1
), pp. 35
–42
.21.
Epple
, B.
, 2013
, “Verfahren und Anordnung zur Abscheidung von CO2 aus Verbrennungsabgas
,” Patent No. DE102008050816 B4.22.
Epple
, B.
, and Seeber
, J.
, 2011
, “Regenerative Heat Exchanger and Method for Transferring Heat Between Two Solids
,” Patent No. EP2348272 A2.23.
Ströhle
, J.
, Junk
, M.
, Höftberger
, D.
, Schüppel
, B.
, and Führer
, M.
, 2011
, “Annual Report 2010
,” Research Fund for Coal and Steel, European Commission, Brussels, Belgium, RFCS Project No. RFCR-CT-2010-00011.24.
Korolev
, V. N.
, and Syromyatnikov
, N. I.
, 1980
, “Hydrodynamics of a Fluidized Bed in the Intertube Space of Staggered and In-Line Tube Bundles
,” Inzh.-Fiz. Zh.
, 38
(5
), pp. 514
–519
.25.
Höftberger
, D.
, and Karl
, J.
, 2012
, “Deliverable D1.3.1—Results From Self-Fluidization Testing
,” Research Fund for Coal and Steel, European Commission, Brussels, Belgium, RFCS Project No. RFCR-CT-2010-00011.26.
Michel
, W.
, 1992
, Wirbelschichttechnik in der Energiewirtschaft
, Deutscher Verlag für Grundstoffindustrie
, Leipzig, Germany
.27.
Höftberger
, D.
, Leimert
, J.
, and Karl
, J.
, 2015
, “Deliverable D6.2.1—Layout and Testing of Heat Pipes for the Full-Scale Plant
,” Research Fund for Coal and Steel, European Commission, Brussels, Belgium, RFCS Project No. RFCR-CT-2010-00011.Copyright © 2016 by ASME
You do not currently have access to this content.