An investigation of the transient exergy property term, exergy storage, for a new desalination tray design was performed. It was illustrated that exergy destruction rates provide a means of comparing alternative energy solutions and a measure of their sustainability. To satisfy these objectives one needs accurate calculation of exergy destruction rates. It was confirmed that neglecting the exergy storage term is not a valid approximation for the hourly and daily averaged values of the second law analysis. For a solar desalination system neglecting the exergy storage terms introduced a maximum difference in the exergy destruction rate of 7.4% and a difference of 7.3% in the daily average. In the solar desalination process with energy recovery the second law performance is greater than that for the reverse osmosis (RO) process, the chief competitor, when the exergy storage terms are correctly included in the analysis. The results demonstrate that for variable energy sources such as renewable energy systems, the second law analysis provides a measure of the sustainability of competing system and that the exergy storage terms should be included in the analysis.

References

1.
Fronk
,
B. M.
,
Richard
,
N.
, and
Srinivas
,
G.
,
2010
, “
Evolution of the Transition to a World Driven by Renewable Energy
,”
ASME J. Energy Res. Technol.
,
132
(
2
), p.
021009
.10.1115/1.4001574
2.
Kajitvichyanukul
,
P.
,
Hung
,
Y.-T.
, and
Wang
,
L. K.
,
2011
, “
Handbook of Environmental Engineering
,”
Membrane and Desalination Technologies
, Vol.
13
,
L. K.
Wang
,
J. P.
Chen
,
Y. T.
Hung
, and
N. K.
Shammas
, eds.,
Humana Press
,
New York
.
3.
Cipollina
,
A.
,
Micale
,
G.
, and
Rizzuti
,
L.
, eds.,
2009
,
Seawater Desalination—Conventional and Renewable Energy Processes
,
Springer
,
Berlin
.
4.
Klausner
,
J. F.
,
Yi
,
L.
,
Mohamed
,
D.
, and
Renwei
,
M.
,
2004
, “
Innovative Diffusion Driven Desalination Process
,”
ASME J. Energy Res. Technol.
,
126
(
3
), pp.
219
225
.10.1115/1.1786927
5.
Ettouney
,
H. M.
,
El-Dessouky
,
H. T.
, and
Alatiqi
,
I.
,
1999
, “
Understand Thermal Desalination
,”
Chem. Eng. Prog.
,
95
(
9
), pp.
43
54
.
6.
Kowalski
,
G. J.
, and
Zenouzi
,
M.
,
2010
, “
Enhanced Performance Design of Solar Desalination Device
,”
ASME
Paper No. IMECE2010-40360. 10.1115/IMECE2010-40360
7.
Malik
,
M. A. S.
,
Tiwari
,
G. N.
,
Kumar
,
A.
, and
Sodha
,
M. S.
,
1982
,
Solar Distillation
,
Pergamon
, Oxford, UK.
8.
Romero-Ternero
,
V.
,
Garcia-Rodriguez
,
L.
, and
Gomez-Camacho
,
C.
,
2005
, “
Thermoeconomic Analysis of Wind Powered Seawater Reverse Osmosis Desalination in the Canary Islands
,”
Desalination
,
186
(
1–3
), pp.
291
298
.10.1016/j.desal.2005.06.006
9.
Farahbod
,
F.
,
Mowla
,
D.
,
Jafari Nasr
,
M. R.
, and
Soltanieh
,
M.
,
2012
, “
Investigation of Solar Desalination Pond Performance Experimentally and Mathematically
,”
ASME J. Energy Res. Technol.
,
134
(
4
), p. 041201.10.1115/1.4007194
10.
Hepbasli
,
A.
,
2008
, “
A Key Review on Exergetic Analysis and Assessment of Renewable Energy Resources for a Sustainable Future
,”
Renewable Sustainable Energy Rev.
,
12
(3), pp.
593
661
.10.1016/j.rser.2006.10.001
11.
Garcia-Rodriguez
,
L.
, and
Gomez-Camacho
,
C.
,
2001
, “
Exergy Analysis of the SOL-14 Plant
,”
Desalination
,
137
(1–3), pp.
251
258
.10.1016/S0011-9164(01)00226-0
12.
Tiwari
,
G. N.
,
Dimri
,
V.
, and
Chel
,
A.
,
2009
, “
Parametric Study of an Active and Passive Solar Distillation System: Energy and Exergy Analysis
,”
Desalination
,
242
(1–3), pp.
1
8
.10.1016/j.desal.2008.03.027
13.
Petela
,
R.
,
2003
, “
Exergy of Undiluted Thermal Radiation
,”
Sol. Energy
,
74
(6), pp.
469
488
.10.1016/S0038-092X(03)00226-3
14.
Valero
,
A.
,
Serra
,
L.
, and
Uche
,
J.
,
2006
, “
Fundamentals of Exergy Cost Accounting and Thermoeconomics. Part I: Theory
,”
ASME J. Energy Res. Technol.
,
128
(
1
), pp.
1
8
.10.1115/1.2134732
15.
Aljundi
,
I. H.
,
2009
, “
Second-Law Analysis of a Reverse Osmosis Plant in Jordan
,”
Desalination
,
239
(1–3), pp.
207
215
.10.1016/j.desal.2008.03.019
16.
Cerci
,
Y.
,
2002
, “
Exergy Analysis of a Reverse Osmosis Desalination Plant in California
,”
Desalination
,
142
(3), pp.
257
266
.10.1016/S0011-9164(02)00207-2
17.
Kahraman
,
N.
, and
Cengel
,
Y.
,
2005
, “
Exergy Analysis of a MSF Distillation Plant
,”
Energy Convers. Manage.
,
46
(15–16), pp.
2625
2636
.10.1016/j.enconman.2004.11.009
18.
Modaresifar
,
M.
,
Zenouzi
,
M.
, and
Kowalski
,
G. J.
,
2013
, “
Transient Exergy Analysis for Solar Desalination Processes
,”
ASME
Paper No. IMECE2013-65466.10.1115/IMECE2013-65466
19.
Kowalski
,
G. J.
,
Zenouzi
,
M.
, and
Modaresifar
,
M.
,
2013
, “
Entropy Production: Integrating Renewable Energy Sources Into Sustainable Energy Solution
,”
12th Joint European Thermodynamics Conference
, Brescia, Italy, July 1–5.
20.
Modaresifar
,
M.
,
Zenouzi
,
M.
, and
Kowalski
,
G. J.
,
2012
, “
Exergetic Performance Comparisons of Solar Desalination Devices and Reverse Osmosis Processes
,”
ASME
Paper No. ES2012-91517.10.1115/ES2012-91517
21.
Masters
,
G. M.
,
2004
,
Renewable and Efficient Electric Power Systems
,
Wiley
,
Hoboken, NJ
.
22.
Moran
,
M. J.
, and
Shapiro
,
H. N.
,
Fundamentals of Engineering Thermodynamics
, 5th ed., Wiley.
23.
Zyryanov
,
V. N.
,
2010
, “
Physical Properties of Sea Water, Including Its Three Phases
,” Institute of Water Problems, Russian Academy of Sciences, Moscow.
24.
Sharqawy
,
M. H.
,
Lienhard
,
J. H.
, and
Zubair
,
S. M.
,
2010
, “
Formulation of Seawater Flow Exergy Using Accurate Thermodynamic Data
,”
ASME
Paper No. IMECE2010-40915. 10.1115/IMECE2010-40915
25.
Rashad
,
A.
, and
EI Maihy
,
A.
,
2009
, “
Energy and Exergy Analysis of a Steam Power Plant in Egypt
,”
13th International Conference on Aerospace Sciences & Aviation Technology
(ASAT-13), Cairo, Egypt, May 26–28.
You do not currently have access to this content.