In a wide variety of thermal energy systems, the high integration among components derives from the need to correctly exploit all the internal heat sources by a proper matching with the internal heat sinks. According to what has been suggested in previous works to address this problem in a general way, a “basic configuration” can be extracted from the system flowsheet including all components but the heat exchangers, in order to exploit the internal heat integration between hot and cold thermal streams through process integration techniques. It was also shown how the comprehension of the advanced thermodynamic cycles can be strongly facilitated by decomposing the system into elementary thermodynamic cycles which can be analyzed separately. The advantages of the combination of these approaches are summarized in this paper using the steam injected gas turbine (STIG) cycle and its evolution towards more complex system configurations as an example of application. The new concept of “baseline thermal efficiency” is introduced to combine the efficiencies of the elementary cycles making up the overall system, which demonstrates to be a useful reference to quantify the performance improvement deriving from heat integration between elementary cycles within the system.

References

1.
Rudd
,
D.
,
1968
, “
The Synthesis of System Designs: I. Elementary Decomposition Theory
,”
AIChE J.
,
14
(
2
), pp.
343
349
.10.1002/aic.690140223
2.
El-Sayed
,
Y.
, and
Gaggioli
,
R.
,
1988
, “
The Integration of Synthesis and Optimization for Conceptual Designs of Energy Systems
,”
ASME J. Energy Resour. Technol.
,
110
(2)
, pp.
109
113
.10.1115/1.3231363
3.
Tsatsaronis
,
G.
,
1993
, “
Thermoeconomic Analysis and Optimization of Energy Systems
,”
Prog. Energy Combust. Sci.
,
19
, pp.
227
257
.10.1016/0360-1285(93)90016-8
4.
Lozano
,
M.
, and
Valero
,
A.
,
1993
, “
Theory of the Exergetic Cost
,”
Energy
,
18
(
9
), pp.
939
960
.10.1016/0360-5442(93)90006-Y
5.
Bejan
,
A.
,
Tsatsaronis
,
G.
, and
Moran
,
M.
,
1996
,
Thermal Design and Optimization
,
John Wiley & Sons, Inc.
,
New York
.
6.
Lazzaretto
,
A.
, and
Tsatsaronis
,
G.
,
2006
, “
SPECO: A Systematic and General Methodology for Calculating Efficiencies and Costs in Thermal Systems
,”
Energy
,
31
(
8
), pp.
1257
1289
.10.1016/j.energy.2005.03.011
7.
Linnhoff
,
B.
,
1989
, “
Pinch Technology for the Synthesis and Optimal Heat and Power Systems
,”
ASME J. Energy Resour. Technol.
,
111
(3)
, pp.
137
147
.10.1115/1.3231415
8.
Linnhoff
,
B.
,
Townsend
,
D. W.
,
Boland
,
D.
,
Hewitt
,
G. F.
,
Thomas
,
B. E. A.
,
Guy
,
A. R.
, and
Marsland
,
R. H.
,
1994
,
A User Guide on Process Integration for the Efficient Use of Energy
,
Institution of Chemical Engineers
,
Rugby, UK
.
9.
Olsommer
,
B.
,
von Spakovsky
,
M. R.
, and
Favrat
,
D.
,
1999
, “
An Approach for the Time-Dependent Thermoeconomic Modeling and Optimization of Energy System Synthesis, Design and Operation: Part I—Methodology and Results
,”
Int. J. Thermodyn.
,
2
(3)
, pp.
97
114
. Available at http://ehakem.com/index.php/IJoT/article/viewArticle/18
10.
Olsommer
,
B.
,
von Spakovsky
,
M. R.
, and
Favrat
,
D.
,
1999
, “
An Approach for the Time-Dependent Thermoeconomic Modeling and Optimization of Energy System Synthesis, Design and Operation: Part II—Reliability and Availability
,”
Int. J. Thermodyn.
,
2
(4)
, pp.
177
186
. Available at http://www.ijoticat.com/index.php/IJoT/article/viewArticle/26
11.
Sciubba
,
E.
,
1998
, “
Toward Automatic Process Simulators: Part I—Modular Numerical Procedures
,”
ASME J. Eng. Gas Turbines Power
,
120
(1)
, pp.
1
8
.10.1115/1.2818077
12.
Sciubba
,
E.
,
1998
, “
Toward Automatic Process Simulators: Part II—An Expert System for Process Synthesis
,”
ASME J. Eng. Gas Turbines Power
,
120
(1)
, pp.
9
16
.10.1115/1.2818094
13.
Lazzaretto
,
A.
, and
Segato
,
F.
,
2001
, “
Thermodynamic Optimization of the HAT Cycle Structure—Part I: Optimization of the ‘Basic Plant Configuration’
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
1
7
.10.1115/1.1338999
14.
Lazzaretto
,
A.
, and
Segato
,
F.
,
2001
, “
Thermodynamic Optimization of the HAT Cycle Plant Structure—Part II: Structure of the Heat Exchanger Network
,”
ASME J. Eng. Gas Turbines Power
,
123
(
1
), pp.
8
16
.10.1115/1.1339000
15.
Lazzaretto
,
A.
, and
Daniele
,
D.
,
2004
, “
Thermodynamic and Pinch Analyses for Improving Efficiency and Structure of a CRCC Plant With Natural Gas Reforming and CO2 Absorption
,” Proceedings of Turbo Expo,
ASME
, Vol. 7, Paper No. GT2004-54276, pp.
199
210
.10.1115/GT2004-54276
16.
Lazzaretto
,
A.
, and
Toffolo
,
A.
,
2008
, “
A Method to Separate the Problem of Heat Transfer Interactions in the Synthesis of Thermal Systems
,”
Energy
,
33
, pp.
163
170
.10.1016/j.energy.2007.07.015
17.
Toffolo
,
A.
,
Lazzaretto
,
A.
, and
Morandin
,
M.
,
2010
, “
The HEATSEP Method for the Synthesis of Thermal Systems: An Application to the S-Graz Cycle
,”
Energy
,
35
(
2
), pp.
976
981
.10.1016/j.energy.2009.06.030
18.
Ibrahim
,
O. M.
, and
Klein
,
S. A.
,
1995
, “
High-Power Multi-Stage Rankine Cycles
,”
ASME J. Energy Resour. Technol.
,
117
(
3
), pp.
192
196
.10.1115/1.2835340
19.
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Demirkaya
,
G.
,
Besarati
,
S.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Performance Analysis of a Rankine Cycle Integrated With the Goswami Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032001
.10.1115/1.4006434
20.
Demirkaya
,
G.
,
Besarati
,
S.
,
Padilla
,
R. V.
,
Archibold
,
A. R.
,
Goswami
,
D. Y.
,
Rahman
,
M. M.
, and
Stefanakos
,
E. L.
,
2012
, “
Multi-Objective Optimization of a Combined Power and Cooling Cycle for Low-Grade and Midgrade Heat Sources
,”
ASME J. Energy Resour. Technol.
,
134
(
3
), p.
032002
.10.1115/1.4005922
21.
Vijayaraghavan
,
S.
, and
Goswami
,
D. Y.
,
2005
, “
Organic Working Fluids for a Combined Power and Cooling Cycle
,”
ASME J. Energy Resour. Technol.
,
127
(
2
), pp.
125
130
.10.1115/1.1885039
22.
Gambini
,
M.
,
Guizzi
,
G. L.
, and
Vellini
,
M.
,
2005
, “
H2/O2 Cycles: Thermodynamic Potentialities and Limits
,”
ASME J. Eng. Gas Turbines Power
,
127
(
3
), pp.
553
563
.10.1115/1.1924401
23.
Sanz
,
W.
,
Jericha
,
H.
,
Moser
,
M.
, and
Heitmeir
,
F.
,
2005
, “
Thermodynamic and Economic Investigation of an Improved Graz Cycle Power Plant for CO2 Capture
,”
ASME J. Eng. Gas Turbines Power
,
127
(
4
), pp.
765
772
.10.1115/1.1850944
24.
Lazzaretto
,
A.
, and
Manente
,
G.
,
2010
, “
Analysis of Superimposed Elementary Thermodynamic Cycles: From the Brayton-Joule to Advanced Mixed (Auto-Combined) Cycles
,”
Int. J. Thermodyn.
,
12
(
3
), pp.
123
130
. Available at http://www.ijoticat.com/index.php/IJoT/article/viewArticle/247
25.
Rao
,
A. D.
,
1989
, “
Process for Producing Power
,” U.S. Patent No. 4,829,763.
26.
Rao
,
A. D.
,
Francuz
,
V. J.
,
Shen
,
J. C.
, and
West
,
E. W.
,
1991
, “
A Comparison of Humid Air Turbine (HAT) Cycle and Combined-Cycle Power Plants
,” Technical Report No. EPRI-IE-7300.
27.
Nakhamkin
,
M.
,
Swensen
,
E.
,
Wilson
,
J.
,
Gaul
,
G.
, and
Polsky
,
M.
,
1996
, “
The Cascaded Humidified Advanced Turbine (CHAT)
,”
ASME J. Eng. Gas Turbines Power
,
118
(
3
), pp.
565
571
.10.1115/1.2816685
28.
Rice
,
I.
,
1995
, “
Steam-Injected Gas Turbine Analysis: Steam Rates
,”
ASME J. Eng. Gas Turbines Power
,
117
(2)
, pp.
347
353
.10.1115/1.2814101
29.
Saad
,
M.
, and
Cheng
,
D.
,
1997
, “
The New LM2500 Cheng Cycle for Power Generation and Cogeneration
,”
Energy Convers. Manage.
,
38
(
15
), pp.
1637
1646
.10.1016/S0196-8904(96)00204-X
30.
Macchi
,
E.
,
Consonni
,
S.
,
Lozza
,
G.
, and
Chiesa
,
P.
,
1995
, “
An Assessment of the Thermodynamic Performance of Mixed Gas-Steam Cycles: Part A—Intercooled and Steam-Injected Cycles
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
489
498
.10.1115/1.2814122
31.
Macchi
,
E.
,
Consonni
,
S.
,
Lozza
,
G.
, and
Chiesa
,
P.
,
1995
, “
An Assessment of the Thermodynamic Performance of Mixed Gas-Steam Cycles: Part B—Water-Injected and HAT Cycles
,”
ASME J. Eng. Gas Turbines Power
,
117
(
3
), pp.
499
508
.10.1115/1.2814123
32.
Klein
,
S.
, and
Alvarado
,
F.
,
2002
,
Engineering Equation Solver
, F-Chart Software, Madison, WI.
You do not currently have access to this content.