Distributed combustion is now known to provide significantly improved performance of gas turbine combustors. Key features of distributed combustion include uniform thermal field in the entire combustion chamber for significantly improved pattern factor and avoidance of hot-spot regions that promote thermal NOx emissions, negligible emissions of hydrocarbons and soot, low noise, and reduced air cooling requirements for turbine blades. Distributed combustion requires controlled mixing between the injected air, fuel, and hot reactive gasses from within the combustor prior to mixture ignition. The mixing process impacts spontaneous ignition of the mixture to result in improved distributed combustion reactions. Distributed reactions can be achieved in premixed, partially premixed, or nonpremixed modes of combustor operation with sufficient entrainment of hot and active species present in the combustion zone and their rapid turbulent mixing with the reactants. Distributed combustion with swirl is investigated here to further explore the beneficial aspects of such combustion under relevant gas turbine combustion conditions. The near term goal is to develop a high intensity combustor with ultralow emissions of NOx and CO, and a much improved pattern factor and eventual goal of near zero emission combustor. Experimental results are reported for a cylindrical geometry combustor for different modes of fuel injection with emphasis on the resulting pollutants emission. In all the cases, air was injected tangentially to impart swirl to the flow inside the combustor. Ultra low NOx emissions were found for both the premixed and nonpremixed combustion modes for the geometries investigated here. Results showed very low levels of NO (∼10 ppm) and CO (∼21 ppm) emissions under nonpremixed mode of combustion with air preheats at an equivalence ratio of 0.6 and a moderate heat release intensity of 27 MW/m3-atm. Results are also reported on lean stability limits and OH* chemiluminescence under different fuel injection scenarios for determining the extent of distribution combustion conditions. Numerical simulations have also been performed to help develop an understanding of the mixing process for better understanding of ignition and combustion.

References

1.
Tsuji
,
H.
,
Gupta
,
A. K.
,
Hasegawa
,
T.
,
Katsuki
,
M.
,
Kishimoto
,
K.
, and
Morita
,
M.
, 2003,
High Temperature Air Combustion: From Energy Conservation to Pollution Reduction
,
CRC Press
,
Boca Raton, FL
.
2.
Gupta
,
A. K.
,
Lilley
,
D. G.
, and
Syred
,
N.
, 1984,
Swirl Flows
,
Abacus Press
,
Tunbridge Wells, England
.
3.
Lefebvre
,
A. H.
, 1999,
Gas Turbine Combustion
,
Taylor & Francis Group
,
New York
.
4.
Gupta
,
A. K.
, 2004, “
Thermal Characteristics of Gaseous Fuel Flames Using High Temperature Air
,”
ASME J. Eng. Gas Turbines Power
,
126
, pp.
9
19
.
5.
Wunning
,
J. A.
, and
Wunning
,
J. G.
, 1997, “
Flameless Oxidation to Reduce Thermal NO Formation
,”
Prog. Energy Combust. Sci.
,
23
, pp.
81
94
.
6.
Katsuki
,
M.
, and
Hasegawa
,
T.
, 1999, “
The Science and Technology of Combustion in Highly Preheated Air
,”
Proceedings of 27th Symposium (International) on Combustion
, pp.
3135
3146
.
7.
Gupta
,
A. K.
,
Bolz
,
S.
, and
Hasegawa
,
T.
, 1999, “
Effect of Air Preheat Temperature and Oxygen Concentration on Flame Structure and Emission
,”
ASME J. Energy Resour. Technol.
,
121
(
3
), pp.
209
217
.
8.
Gupta
,
A. K.
,
Ilanchezhian
,
E.
, and
Keating
,
E. L.
, 1996, “
Thermal Destruction Behavior of Plastic and Nonplastic Wastes in a Laboratory-Scale Facility
,”
ASME J. Energy Resour. Technol.
,
118
(
4
), pp.
269
276
.
9.
Vijayan
,
V.
, and
Gupta
,
A. K.
, 2010, “
Combustion and Heat Transfer at Meso-Scale With Thermal Recuperation
,”
J. Appl. Energy
,
87
, pp.
2628
2639
.
10.
Shirsat
,
V.
, and
Gupta
,
A. K.
, 2011, “
Performance Characteristics of Methanol and Kerosene Fuelled Meso-Scale Heat Recirculating Combustors
,”
J. Appl. Energy
,
88
, pp.
5069
5082
.
11.
Arghode
,
V. K.
, and
Gupta
,
A. K.
, 2010, “
Effect of Flowfield for Colorless Distributed Combustion (CDC) for Gas Turbine Combustion
,”
J. Appl. Energy
,
78
, pp.
1631
1640
.
12.
Arghode
,
V. K.
, and
Gupta
,
A. K.
, 2011, “
Investigation of Forward Flow Distributed Combustion for Gas Turbine application
,”
J. Appl. Energy
,
88
, pp.
29
40
.
13.
Arghode
,
V. K.
,
Gupta
,
A. K.
, and
Yu
,
K. H.
, 2010, “
Investigation of Non-Premixed and Premixed Distributed Combustion for GT Application
,”
48th AIAA Aerospace Sciences Meeting
, Orlando, FL, Jan. 4–7, Paper No. AIAA-2010-1353.
14.
Khalil
,
A. E. E.
,
Arghode
,
V.
, and
Gupta
,
A. K.
, 2010, “
Colorless Distributed Combustion (CDC) With Swirl for Gas Turbine Application
,”
Proceedings of ASME Power Conference, POWER2010
, Chicago, IL, pp.
77
88
.
15.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
, 2011, “
Swirling Distributed Combustion for Clean Energy Conversion in Gas Turbine Applications
,”
J. Appl. Energy
,
88
, pp.
3685
3693
.
16.
Arghode
,
V.
,
Gupta
,
A. K.
, and
Bryden
,
K. M.
, 2012, “
High Intensity Colorless Distributed Combustion for Ultra Low Emissions and Enhanced Performance
,”
J. Appl. Energy
,
92
, pp.
822
830
.
17.
Arghode
,
V.
, and
Gupta
,
A. K.
, 2011, “
Hydrogen Addition Effects on Methane-Air Colorless Distributed Combustion Flames
,”
Int. J. Hydrogen Energy
,
36
, pp.
6292
6302
.
18.
Arghode
,
V.
, and
Gupta
,
A. K.
, 2010, “
Investigation of Reverse Flow Distributed Combustion for Gas Turbine Application
,”
J. Appl. Energy
,
88
, pp.
1096
1104
.
19.
Arghode
,
V.
, and
Gupta
,
A. K.
, 2010, “
Development of High Intensity CDC Combustor for Gas Turbine Engines
,”
J. Appl. Energy
,
88
, pp.
963
973
.
20.
Correa
,
S. M.
, 1992, “
A Review of NOx Formation Under Gas-Turbine Combustion Conditions
,”
Combust. Sci. Technol.
,
87
, pp.
329
362
.
21.
Vincent
,
E. T.
, 1950,
The Theory and Design of Gas Turbines and Jet Engines
,
McGraw-Hill Book Co
,
New York
.
22.
Archer
,
S.
, and
Gupta
,
A. K.
, 2004, “
Effect of Swirl on Flow Dynamics in Unconfined and Confined Gaseous Fuel Flames
,”
42nd AIAA Aerospace Sciences Meeting and Exhibit
, Jan. 5–8, Reno, NV, Paper No. AIAA-2004-0813.
23.
Leuckel
,
I. W.
, and
Fricker
,
N.
, 1976, “
The Characteristics of Swirl-Stabilized Natural Gas Flames
,”
J. Inst. Fuel
,
49
, pp.
103
112
.
24.
Chen
,
R. H.
, and
Driscoll
,
J. F.
, 1988, “
The Role of Recirculation Vortex in Improving Fuel-Air Mixing Within Swirling Flames
,”
Proceedings of 22nd Symposium (International) on Combustion
, pp.
531
540
.
25.
Gupta
,
A. K.
,
Beér
,
J. M.
, and
Swithenbank
,
J.
, 1977, “
Concentric Multi-Annular Swirl Burner: Stability Limits and Emission Characteristics
,”
Proceedings of 16th Symposium (International) on Combustion
, pp.
79
91
.
26.
Correa
,
S. M.
,
Hu
,
I. Z.
, and
Tolpadi
,
A. K.
, 1996, “
Combustion Technology for Low-Emissions Gas-Turbines: Some Recent Modeling Results
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
201
208
.
27.
Yetter
,
R. A.
,
Glassman
,
I.
, and
Gabler
,
H. C.
, 2000, “
Asymmetric Whirl Combustion: A New Low NOx Approach
,”
Proc. Combust. Inst.
,
28
, pp.
1265
1272
.
28.
Correa
,
S. M.
,
Dean
,
A. J.
, and
Hu
,
I. Z.
, 1996, “
Combustion Technology for Low-Emissions Gas-Turbines: Selected Phenomena Beyond NOx
,”
ASME J. Energy Resour. Technol.
,
118
(
3
), pp.
193
200
.
29.
Kim
,
S.-H.
,
Yoon
,
Y.
, and
Jeung
,
I.-S.
, 2000, “
Nitrogen Oxides Emissions in Turbulent Hydrogen Jet Non-premixed Flames: Effects of Coaxial Air and Flame Radiation
,”
Proc. Combust. Inst.
,
28
, pp.
463
470
.
30.
Villermaux
,
E.
, and
Rehab
,
D. H.
, 2000, “
Mixing in Coaxial Jets
,”
J. Fluid Mech.
,
425
, pp.
161
185
.
31.
Bobba
,
M. K.
,
Gopalakrishnan
,
P.
,
Periagaram
,
K.
, and
Seitzman
,
J. M.
, 2008, “
Flame Structure and Stabilization Mechanisms in a Stagnation Point Reverse Flow Combustor
,”
ASME J. Eng. Gas Turbines Power
,
130
, pp.
1
8
.
32.
Kamal
,
A.
, and
Gollahalli
,
S. R.
, 2001, “
Effects of Jet Reynolds Number on the Performance of Axisymmetric and Nonaxisymmetric Gas Burner Flames
,”
ASME J. Energy Resour. Technol.
,
123
(
2
), pp.
167
172
.
33.
Khalil
,
A. E. E.
, and
Gupta
,
A. K.
, 2011, “
Distributed Swirl Combustion for Gas Turbine Application
,”
J. Appl. Energy
,
88
, pp.
4898
4907
.
34.
Lefebvre
,
A. H.
, 1995, “
The Role of Fuel Preparation in Low-Emission Combustion
,”
J. Eng. Gas Turbines Power
,
117
(
4
), pp.
617
654
.
You do not currently have access to this content.