A biodiesel storage stability study was conducted on ultralow sulfur diesel fuel (ULSDF) and three biodiesel basestocks (B100) and fuel blends (B2, B5, B10, and B20). The storage stability study consisted in measuring and monitoring the changes in acid number (AN, ASTM D664-04) and kinematic viscosity (ASTM D445) over 10 months with different samples stored at 5°C, 40°C, and cyclic thermal conditions. Among the three biodiesel base fuels (B100) studied, Bio1 (from tallow) and Bio2 (from yellow grease) showed the largest increase in AN throughout 6 months of storage at 40°C while Bio3 (from canola) showed the least increase in AN. Bio1, Bio2, and Bio3 samples stored at 5°C showed very little increases in acidity after 10 month, while samples stored under thermal cycling conditions were comparable to those stored at 40°C. The AN for ULSDF and all blends between B2 and B20 for Bio1, Bio2 and Bio3 remained in the range of 0.10.3mgKOHg1 for all temperatures and throughout the storage period well below the ASTM 6751 limit of 0.5mgKOHg1. All blends showed a lower increase in AN than any of the base fuels. All fuels were submitted to accelerated oxidative testing, which also revealed a greater stability of the blends than for the biodiesel base fuels. Bio1 (from tallow) blends displayed a greater stability under accelerated oxidative testing while Bio2 (from yellow grease) displayed the least. The impact of storage conditions on the viscosities of all the base fuels and blends was negligible.

1.
Binfield
,
J.
,
Brown
,
D. S.
,
Carriquiry
,
M.
,
Chavez
,
E.
,
Dong
,
F.
,
Du
,
X.
,
Elobeid
,
A.
,
Fabiosa
,
J.
,
Gerlt
,
S.
,
Hart
,
C.
,
Hayes
,
D. J.
,
Kovarik
,
K.
,
Madison
,
D.
,
Meyer
,
S.
,
Meyers
,
W. H.
,
Thompson
,
W.
,
Tokgoz
,
S.
,
Wailes
,
E.
,
Westhoff
,
P.
,
Wilcox
,
L.
, and
Womack
,
A. W.
, 2009, “
US and World Agricultural Outlook
,” Food and Agricultural Policy Research Institute, Ames, IA, pp.
223
265
.
2.
Zhang
,
Y.
,
Dubé
,
M. A.
,
McLean
,
D. D.
, and
Kates
,
M.
, 2003, “
Biodiesel Production From Waste Cooking Oil: 2. Economic Assessment and Sensitivity Analysis
,”
Bioresour. Technol.
0960-8524,
90
, pp.
229
240
.
3.
Ma
,
F.
, and
Hanna
,
M. A.
, 1999, “
Biodiesel Production, A Review
,”
Bioresour. Technol.
0960-8524,
70
, pp.
1
15
.
4.
Knothe
,
G.
, 2007, “
Some Aspects of Biodiesel Oxidative Stability
,”
Fuel Process. Technol.
0378-3820,
88
, pp.
669
677
.
5.
Knothe
,
G.
, and
Dunn
,
R. O.
, 2001, “
Biofuels Derived From Vegetable Oils and Fats
,”
Oleochemical Manufacture and Applications
,
F. D.
Gunstone
and
R. J.
Hamilton
, eds.,
Academic
,
Sheffield, UK
, pp.
106
163
.
6.
Mushrush
,
G. W.
,
Wynne
,
J. H.
,
Lloyd
,
C. T.
,
Willauer
,
H. D.
, and
Hughes
,
J. M.
, 2005, “
Recycled Soybean Derived Cooking Oils as Blending Stocks for Middle Distillate Transportation Fuels
,”
Energy Sources
0090-8312,
27
, pp.
781
786
.
7.
Washington State University, University of Idaho, Glosten Associates, Inc., and Imperium Renewables, Inc.
, 2009, “
Washington State Ferry Biodiesel Research & Demonstration Project
,” Washington, DC, April 30.
8.
Waynick
,
J. A.
, 2005,“
Characterization of Biodiesel Oxidation and Oxidation Products
,” Technical Literature Review, Southwest Research Institute Project No. 08-10721, National Renewable Energy Laboratory, U.S. Department of Energy, (TP-540-39096).
9.
Yamane
,
K.
,
Kawasaki
,
K.
,
Sone
,
K.
,
Hara
,
T.
, and
Prakoso
,
T.
, 2007, “
Oxidation Stability of Biodiesel and Its Effect on Diesel Combustion and Emission Characteristics
,”
Int. J. Engine Res.
1468-0874,
8
, pp.
307
319
.
10.
Stauffer
,
E. C.
, 1996,
Fats and Oils
,
Eagen
,
St. Paul, MN
.
11.
Bondioli
,
P.
,
Gasparoli
,
A.
,
Lanzani
,
A.
,
Fedeli
,
E.
,
Veronese
,
S.
, and
Sala
,
M.
, 1995, “
Storage Stability of BioDiesel
,”
J. Am Oil Chem. Soc.
,
72
, pp.
699
702
. 0147-2011
12.
Leung
,
D. Y. C.
,
Koo
,
B. C. P.
, and
Guo
,
Y.
, 2006, “
Degradation of Biodiesel Under Different Storage Conditions
,”
Bioresour. Technol.
0960-8524,
97
, pp.
250
256
.
13.
Loh
,
S. -K.
,
Chew
,
S. -M.
, and
Choo
,
Y. -M.
, 2006, “
Oxidative Stability and Storage Behaviour of Fatty Acid Methyl Esters Derived From Used Palm Oil
,”
J. Am Oil Chem. Soc.
,
83
, pp.
947
952
. 0147-2011
14.
Polavka
,
J.
,
Paligova
,
J.
,
Cvengros
,
J.
, and
Simon
,
P.
, 2005, “
Oxidation Stability of Methyl Esters Studied by Differential Thermal Analysis and Rancimat
,”
J. Am Oil Chem. Soc.
,
82
, pp.
519
524
. 0147-2011
15.
Peckam
,
J.
, 2004,“
South America Begins ULSD March
,”
World Refining
,
14
, Part 6, pp.
26
31
.
16.
Anastopoulos
,
G.
,
Lois
,
E.
,
Karonis
,
D.
,
Kalligeros
,
S.
, and
Zannikos
,
F.
, 2005, “
Impact of Oxygen and Nitrogen Compounds on the Lubrication Properties of Low Sulfur Diesel Fuels
,”
Energy
0360-5442,
30
, pp.
415
426
.
17.
Wain
,
K. S.
,
Perez
,
J. M.
,
Chapman
,
E.
, and
Boehman
,
A. L.
, 2005, “
Alternative and Low Sulfur Fuel Options: Boundary Lubrication Performance and Potential Problems
,”
Tribol. Int.
0301-679X,
38
, pp.
313
319
.
18.
Dunn
,
R. O.
, 2005, “
Oxidative Stability of Soybean Oil Fatty Acid Methyl Esters by Oil Stability Index (OSI)
,”
J. Am Oil Chem. Soc.
,
82
, pp.
381
387
. 0147-2011
19.
Berthiaume
,
D.
, and
Tremblay
,
A.
, 2006, “
Study of the Rancimat Test Method in Measuring the Oxidation Stability of Biodiesel Ester and Blends
,” OLEOTEK Inc. Report, NRCan Project No. CO414 CETC-327.
20.
Sendzikienne
,
E.
,
Makareviciene
,
V.
, and
Janulus
,
P.
, 2005, “
Oxidation Stability of Biodiesel Fuel Produced From Fatty Wastes
,”
Pol. J. Environ. Stud.
,
14
, pp.
335
339
. 1230-1485
21.
Knothe
,
G.
, 2002, “
Structure Indices in FA Chemistry. How Relevant is the Iodine Value?
,”
J. Am Oil Chem. Soc.
,
79
, pp.
847
854
. 0147-2011
22.
Sarin
,
R.
,
Sharma
,
M.
,
Sinharay
,
S.
, and
Malhotra
,
R. K.
, 2007, “
Jatropha-Palm Biodiesel Blends: An Optimum Mix for Asia
,”
Fuel
0016-2361,
86
, pp.
1365
1371
.
You do not currently have access to this content.