An irreversible cycle model of the Otto heat engine is established, in which the temperature-dependent heat capacities of the working fluid, the irreversibilities resulting from the nonisentropic compression and expansion processes, and heat leak losses through the cylinder wall are taken into account. The adiabatic equation of ideal gases with the temperature-dependent heat capacity is strictly deduced without using the additional approximation condition in the relevant literature and used to analyze the performance of the Otto heat engine. Expressions for the work output and efficiency of the cycle are derived by introducing the compression ratio of two isochoric processes. The performance characteristic curves of the Otto heat engine are presented for a set of given parameters. The optimum criteria of some important parameters such as the work output, efficiency, compression ratio, and temperatures of the working fluid are given. Moreover, the influence of the compression and expansion efficiencies, the variable heat capacities, the heat leak, and other parameters on the performance of the cycle is discussed in detail. The results obtained are novel and general, from which some relevant conclusions in literature may be directly derived. This work may provide a significant guidance for the performance improvement and optimal design of the Otto heat engine.

1.
Mozurkewich
,
M.
, and
Berry
,
R. S.
, 1982, “
Optimal Paths for Thermodynamic Systems: The Ideal Otto Cycle
,”
J. Appl. Phys.
0021-8979,
53
, pp.
34
42
.
2.
Scully
,
M. O.
, 2002, “
Quantum Afterburner: Improving the Efficiency of an Ideal Heat Engine
,”
Phys. Rev. Lett.
0031-9007,
88
, p.
050602
.
3.
Rostovtsev
,
Y. V.
,
Matsko
,
A. B.
,
Nayak
,
N.
,
Zubairy
,
M. S.
, and
Scully
,
M. O.
, 2003, “
Improving Engine Efficiency by Extracting Laser Energy From Hot Exhaust Gas
,”
Phys. Rev. A
1050-2947,
67
, p.
053811
.
4.
Wu
,
C.
, and
Blank
,
D. A.
, 1992, “
The Effects of Combustion on a Work-Optimized Endoreversible Otto Cycle
,”
J. Inst. Energy
0144-2600,
65
, pp.
86
89
.
5.
Wu
,
C.
, and
Blank
,
D. A.
, 1993, “
Optimization of the Endoreversible Otto Cycle With Respect to Both Power and Mean Effective Pressure
,”
Energy Convers. Manage.
0196-8904,
34
, pp.
1255
1259
.
6.
Angulo-Brown
,
F.
,
Fernández-Betanzos
,
J.
, and
Diaz-Pico
,
C. A.
, 1994, “
Compression Ratio of an Optimized Air Standard Otto Cycle Model
,”
Eur. J. Phys.
0143-0807,
15
, pp.
38
42
.
7.
Angulo-Brown
,
F.
,
Rocha-Martinez
,
J. A.
, and
Navarrete-Gonzalez
,
T. D.
, 1996, “
A Non-Endoreversible Otto Cycle Model: Improving Power Output and Efficiency
,”
J. Phys. D
0022-3727,
29
, pp.
80
83
.
8.
Hernández
,
A. C.
,
Roco
,
J. M. M.
,
Medina
,
A.
, and
Velasco
,
S.
, 1996, “
An Irreversible and Optimized Four Stroke Cycle Model for Automotive Engines
,”
Eur. J. Phys.
0143-0807,
17
, pp.
11
18
.
9.
Aragón-González
,
G.
,
Canales-Palma
,
A.
, and
León-Galicia
,
A.
, 2000, “
Maximum Irreversible Work and Efficiency in Power Cycles
,”
J. Phys. D
0022-3727,
33
, pp.
1403
1409
.
10.
Ghatak
,
A.
, and
Chakraborty
,
S.
, “
Effect of External Irreversibilities and Variable Thermal Properties of Working Fluid on Thermal Performance of a Dual Internal Combustion Engine Cycle
,”
Heat Transfer Eng.
0145-7632, submitted.
11.
Ge
,
Y.
,
Chen
,
L.
,
Sun
,
F.
, and
Wu
,
C.
, 2005, “
Thermodynamic Simulation of Performance of an Otto Cycle With Heat Transfer and Variable Specific Heats of Working Fluid
,”
Int. J. Therm. Sci.
1290-0729,
44
, pp.
506
511
.
12.
Al-Sarkhi
,
A.
,
Jaber
,
J. O.
,
Abu-Qudais
,
M.
, and
Probert
,
S. D.
, 2006, “
Effects of Friction and Temperature-Dependent Specific-Heat of the Working Fluid on the Performance of a Diesel-Engine
,”
Appl. Energy
0306-2619,
83
, pp.
153
165
.
13.
Al-Sarkhi
,
A.
,
Jaber
,
J. O.
, and
Probert
,
S. D.
, 2006, “
Efficiency of a Miller Engine
,”
Appl. Energy
0306-2619,
83
, pp.
343
351
.
14.
Leff
,
H. S.
, 1987, “
Efficiency at Maximum Work Output: New Results for Old Heat Engines
,”
Am. J. Phys.
0002-9505,
55
, pp.
602
610
.
15.
Chen
,
L.
,
Zheng
,
J.
,
Sun
,
F.
, and
Wu
,
C.
, 2001, “
Power Density Analysis and Optimization of a Regenerated Closed Variable-Temperature Heat Reservoir Brayton Cycle
,”
J. Phys. D
0022-3727,
34
, pp.
1727
1739
.
16.
Aragón-González
,
G.
,
Canales-Palma
,
A.
,
León-Galicia
,
A.
, and
Musharrafie-Martínez
,
M.
, 2003, “
A Criterion to Maximize the Irreversible Efficiency in Heat Engines
,”
J. Phys. D
0022-3727,
36
, pp.
280
287
.
17.
Ozsoysal
,
O. A.
, 2006, “
Heat Loss as a Percentage of Fuel’s Energy in Air Standard Otto and Diesel Cycles
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
1051
1062
.
18.
Klein
,
S. A.
, 1991, “
An Explanation for Observed Compression Ratios in Internal Combustion Engines
,”
ASME J. Eng. Gas Turbines Power
0742-4795,
113
, pp.
511
513
.
19.
Zhao
,
Y.
,
Lin
,
B.
,
Zhang
,
Y.
, and
Chen
,
J.
, 2006, “
Performance Analysis and Parametric Optimum Design of an Irreversible Diesel Heat Engine
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
3383
3392
.
20.
Orlov
,
V. N.
, and
Berry
,
R. S.
, 1993, “
Power and Efficiency Limits for Internal-Combustion Engines via Methods of Finite-Time Thermodynamics
,”
J. Appl. Phys.
0021-8979,
74
, pp.
4317
4322
.
21.
Hoffman
,
K. H.
,
Watowich
,
S. J.
, and
Berry
,
R. S.
, 1985, “
Optimal Paths for Thermodynamic Systems: The Ideal Diesel Cycle
,”
J. Appl. Phys.
0021-8979,
58
, pp.
2125
2134
.
22.
Angulo-Brown
,
F.
,
Arias-Hernández
,
L. A.
, and
Páez-Hernández
,
R.
, 1999, “
A General Property of Non-Endoreversible Thermal Cycles
,”
J. Phys. D
0022-3727,
32
, pp.
1415
1420
.
23.
Guzmán-Vargas
,
L.
,
Reyes-Ramírez
,
I.
, and
Sánchez
,
N.
, 2005, “
The Effect of Heat Transfer Laws and Thermal Conductances on the Local Stability of an Endoreversible Heat Engine
,”
J. Phys. D
0022-3727,
38
, pp.
1282
1291
.
24.
Chen
,
L.
,
Ge
,
Y.
,
Sun
,
F.
, and
Wu
,
C.
, 2006, “
Effects of Heat Transfer, Friction and Variable Specific Heats of Working Fluid on the Performance of an Irreversible Dual Cycle
,”
Energy Convers. Manage.
0196-8904,
47
, pp.
3224
3234
.
You do not currently have access to this content.