In proton-exchange membrane fuel cells it is particularly important to maintain appropriate water content and temperature in the electrolyte membrane. The water balance depends on the coupling between diffusion of water, pressure variation, and the electro-osmotic drag in the membrane. In this paper we apply conservation laws for water and current, in conjunction with an empirical relationship between electro-osmotic drag and water content, to obtain a transport equation for water molar concentration and to derive a new equation for the electric potential that strictly accounts for variable water content and is more accurate than the conventionally used Laplace’s equation. The model is coupled with a computational fluid dynamics model that includes the porous gas diffusion electrodes and the reactant flow channels. The resulting coupled model accounts for multi-species diffusion (Stefan-Maxwell equation); first-order reaction kinetics (Butler-Volmer equation); proton transport (Nernst-Planck equation); and water transport in the membrane (Schlo¨gl equation). Numerical simulations for a two-dimensional cell are performed over nominal current densities ranging from i=0.4 to i=1.2A/cm2. The relationship between humidification and the membrane potential loss is investigated, and the impact and importance of two-dimensionality, temperature, and pressure nonuniformities are analyzed and discussed.

1.
Lampinen
,
M. J.
, and
Fomino
,
M.
,
1993
, “
Analysis of Free Energy and Entropy Changes for Half-Cell Reactions
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3537
3546
.
2.
Bernardi
,
D. M.
, and
Verbrugge
,
M. W.
,
1990
, “
Water-Balance Calculations for Solid-Polymer-Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
137
(
11
), pp.
3344
3350
.
3.
1991
, “
Mathematical Model of a Gas Diffusion Electrode Bonded to Polymer Electrolyte
,”
AIChE J.
,
37
(8), pp.
1151
1163
.
4.
1992
, “
A Mathematical Model of the Solid-Polymer-Electrolyte Fuel Cell
,”
J. Electrochem. Soc.
,
139
(9), pp.
2477
2490
.
5.
Springer
,
T. E.
,
Wilson
,
M.
, and
Gottesfeld
,
S.
,
1993
, “
Modeling and Experimental Diagnostics in Polymer Electrolyte Fuel Cells
,”
J. Electrochem. Soc.
,
140
(
12
), pp.
3513
3526
.
6.
Springer
,
T. E.
,
Zawodzinski
,
T. A.
, and
Gottesfeld
,
S.
,
1991
, “
Polymer Electrolyte Fuel Cell Model
,”
J. Electrochem. Soc.
,
138
(
8
), pp.
2334
2342
.
7.
Sena
,
D. R.
,
Ticianelli
,
E. A.
,
Paganin
,
V. A.
, and
Gonzalez
,
M. R.
,
1999
, “
Effect of Water Transport in a Pefc at Low Temperatures Operating With Dry Hydrogen
,”
J. Electroanal. Chem.
,
477
, pp.
164
170
.
8.
Gurau
,
V.
,
Liu
,
H.
, and
Kakac
,
S.
,
1998
, “
Two-Dimensional Model for Proton Exchange Membrane Fuel Cells
,”
AIChE J.
,
44
(
11
), pp.
2410
2422
.
9.
Singh
,
D.
,
Lu
,
D. M.
, and
Djilali
,
N.
,
1999
, “
A Two-Dimensional Analysis of Mass Transport in Proton Exchange Membrane Fuel Cells
,”
Int. J. Eng. Sci.
,
37
, pp.
431
452
.
10.
Hsing
,
I. M.
, and
Futerko
,
P.
,
2000
, “
Two-Dimensional Simulation of Water Transport in Polymer Electrolyte Fuel Cells
,”
Chem. Eng. Sci.
,
55
, pp.
4209
4218
.
11.
Mazumder
,
S.
, and
Cole
,
J. V.
,
2003
, “
Rigorous Three-Dimensional Mathematical Modeling of Proton Exchange Membrane Fuel Cells. Part 2: Model Predictions With Liquid Water Transport
,”
J. Electrochem. Soc.
,
150
(
11
), pp.
A1510–A1517
A1510–A1517
.
12.
Um
,
S.
, and
Wang
,
C. Y.
,
2004
, “
Three-Dimensional Analysis of Transport and Electrochemical Reactions in Polymer Electrolyte Fuel Cells
,”
J. Power Sources
,
125
, pp.
40
51
.
13.
Um
,
S.
,
Wang
,
C. Y.
, and
Chen
,
K. S.
,
2000
, “
Computational Fluid Dynamics Modeling of Proton Exchange Membrane Fuel Cells
,”
J. Electrochem. Soc.
,
147
(
12
), pp.
4485
4493
.
14.
Wang, C., and Cheng, P., 1997, “Multiphase Flow and Heat Transfer in Porous Media,” in Advances in Heat Transfer, J. P. Hartnett et al., eds. 30, pp. 93–196, Academic Press.
15.
Bird, R. B., Stewart, W., and Lightfoot, E. N. 1960, Transport Phenomena, Wiley, New York.
16.
Bard, A. J., and Faulkner, L. R., 1980, Electrochemical Methods, John Wiley & Sons, New York.
17.
Cao, J., and Djilali, N., 2000, “Computational Simulation of Water Transport in Proton Exchange Membrane Fuel Cells,” Proceedings of 10th Canadian Hydrogen Conference, T. K. Bose and P. Be´nard, eds., Quebec City, May 28–31, pp. 447–456.
18.
Verbrugge
,
M. W.
, and
Hill
,
R. F.
,
1993
, “
Ion and Solvant Transport in Ion-Exchange Membranes
,”
J. Electrochem. Soc.
,
140
(
5
), pp.
1218
1225
.
19.
Fales
,
J. L.
, and
Vandeborough
,
N. E.
,
1986
, “
The Influence of Ionomer Channel Geometry on Ionomer Transport
,”
Electrochem. Soc. Proc.
,
86
(
13
), pp.
179
191
.
20.
West
,
A. C.
, and
Fuller
,
T. F.
,
1996
, “
Influence of Rib Spacing in Proton-Exchange Membrane Electrode Assemblies
,”
J. Appl. Electrochem.
,
26
, pp.
557
565
.
21.
White, F. M., 1994, Fluid Mechanics, 3rd ed., McGraw Hill, New York.
You do not currently have access to this content.