Abstract

Finite element simulations are broadly utilized to calculate the thermally induced mechanical deformations of interconnecting solder materials in electronics. The Anand unified viscoplasticity model is a prevalent choice for simulating the mechanical responses of solder joints, comprising nine parameters whose individual effects are not fully addressed in the literature. For this reason, this study examines the influence of each Anand parameter on the mechanical response of leadless tin–silver–copper (SAC) solder alloys with varying silver content through comprehensive nonlinear finite element simulations. Anand model coefficients for different SAC alloys, including SAC105, SAC205, SAC305, and SAC405, were sourced from existing literature and used to establish a systematic study matrix for each parameter. These coefficients were then integrated into thermomechanical simulations to induce inelastic deformations in the solder interconnections. The response of the solder interconnects is analyzed in terms of equivalent inelastic strains and inelastic strain energy density. Results indicated that specific Anand parameters could skew the solder joint stress–strain response toward brittle behavior, while other parameters could lead to a more ductile response. Through statistical factorial analysis, the significance of each parameter is found to vary considerably, ranging from negligible to highly significant. The findings of this study are crucial for understanding the behavior of different SAC solder configurations and their expected thermal fatigue performance based on Anand creep constants. Furthermore, this paper provides foundational insights into the interpretation of Anand coefficients and their influence on the mechanical response of solder materials, a topic not yet explored in the existing literature.

References

1.
Gharaibeh
,
M. A.
, and
Makhlouf
,
A. S. H.
,
2020
, “
Failures of Electronic Devices: Solder Joints Failure Modes, Causes and Detection Methods
,”
Handbook of Materials Failure Analysis
,
Butterworth-Heinemann
, Cambridge, MA, pp.
3
17
.
2.
Pang
,
J. H. L.
,
2011
,
Lead Free Solder
,
Springer
, New York.
3.
Otiaba
,
K. C.
,
Bhatti
,
R. S.
,
Ekere
,
N. N.
,
Mallik
,
S.
, and
Ekpu
,
M.
,
2013
, “
Finite Element Analysis of the Effect of Silver Content for Sn–Ag–Cu Alloy Compositions on Thermal Cycling Reliability of Solder Die Attach
,”
Eng. Failure Anal.
,
28
, pp.
192
207
.10.1016/j.engfailanal.2012.10.008
4.
Collins
,
M. N.
,
Punch
,
J.
,
Coyle
,
R.
,
Reid
,
M.
,
Popowich
,
R.
,
Read
,
P.
, and
Fleming
,
D.
,
2011
, “
Thermal Fatigue and Failure Analysis of SnAgCu Solder Alloys With Minor Pb Additions
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
1
(
10
), pp.
1594
1600
.10.1109/TCPMT.2011.2150223
5.
Ng
,
H. S.
,
Tee
,
T. Y.
,
Goh
,
K. Y.
,
Luan
,
J. E.
,
Reinikainen
,
T.
,
Hussa
,
E.
, and
Kujala
,
A.
,
2005
, “
Absolute and Relative Fatigue Life Prediction Methodology for Virtual Qualification and Design Enhancement of Lead-Free BGA
,” Proceedings of the Electronic Components and Technology (
ECTC'05
), Lake Buena Vista, FL, May 31–June 3, pp.
1282
1291
.10.1109/ECTC.2005.1441434
6.
Wiese
,
S.
, and
Wolter
,
K. J.
,
2004
, “
Microstructure and Creep Behaviour of Eutectic SnAg and SnAgCu Solders
,”
Microelectron. Reliab.
,
44
(
12
), pp.
1923
1931
.10.1016/j.microrel.2004.04.016
7.
Kang
,
S. K.
,
Lauro
,
P.
,
Shih
,
D. Y.
,
Henderson
,
D. W.
, and
Puttlitz
,
K. J.
,
2005
, “
Microstructure and Mechanical Properties of Lead-Free Solders and Solder Joints Used in Microelectronic Applications
,”
IBM J. Res. Dev.
,
49
(
4.5
), pp.
607
620
.10.1147/rd.494.0607
8.
Kamruzzaman
,
M.
,
2019
, “
Effects of Thermal Aging on Plastic Ball Grid Array Microprocessor Life Under Power and Mechanical Cycling
,”
M.Sc. thesis
,
Bangladesh University of Engineering and Technology
, Dhaka, Bangladesh.https://lib.buet.ac.bd/cgi-bin/koha/opac-detail.pl?biblionumber=42169&shelfbrowse_itemnumber=76066
9.
Gharaibeh
,
M. A.
, and
Al-Oqla
,
F. M.
,
2023
, “
Numerical Evaluation of the Mechanical Response of Sn-Ag-Cu Lead-Free Solders of Various Silver Contents
,”
Soldering Surf. Mount Technol.
,
35
(
5
), pp.
319
330
.10.1108/SSMT-07-2023-0036
10.
Terashima
,
S.
,
Kariya
,
Y.
,
Hosoi
,
T.
, and
Tanaka
,
M.
,
2003
, “
Effect of Silver Content on Thermal Fatigue Life of Sn-xAg-0.5Cu Flip-Chip Interconnects
,”
J. Electron. Mater.
,
32
(
12
), pp.
1527
1533
.10.1007/s11664-003-0125-z
11.
Hassan
,
K. R.
,
Alam
,
M. S.
,
Basit
,
M.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2019
, “
Experimental Characterization of the Dependence of the Poisson's Ratio of Lead Free Solder on Temperature, Strain Rate, Solidification Profile, and Isothermal Aging
,” 2019 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
1342
1353
.10.1109/ITHERM.2019.8757309
12.
Lall
,
P.
,
Zhang
,
D.
,
Yadav
,
V.
,
Suhling
,
J.
, and
Locker
,
D.
,
2016
, “
Effect of Temperature on the High Strain Rate Properties of SAC Leadfree Alloys at Temperatures Up to 200 °C
,” 2016 IEEE 66th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 31–June 3, pp.
1924
1932
.10.1109/ECTC.2016.397
13.
Basit
,
M.
,
Motalab
,
M.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2015
, “
Viscoplastic Constitutive Model for Lead-Free Solder Including Effects of Silver Content, Solidification Profile, and Severe Aging
,”
ASME
Paper No. IPACK2015-48619.10.1115/IPACK2015-48619
14.
Basit
,
M.
,
Ahmed
,
S.
,
Motalab
,
M.
,
Roberts
,
J. C.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2016
, “
The Anand Parameters for SAC Solders After Extreme Aging
,” 2016 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3, pp.
440
447
.10.1109/ITHERM.2016.7517582
15.
Basit
,
M. M.
,
Motalab
,
M.
,
Roberts
,
J. C.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2014
, “
The Effects of Silver Content and Solidification Profile on the Anand Constitutive Model for SAC Lead Free Solders
,” 14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
488
502
.10.1109/ITHERM.2014.6892322
16.
Ahmed
,
S.
,
Basit
,
M.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2015
, “
Characterization of Doped SAC Solder Materials and Determination of Anand Parameters
,”
ASME
Paper No. IPACK2015-48624.10.1115/IPACK2015-48624
17.
Gharaibeh
,
M. A.
,
2023
, “
Nonlinear Finite Element Simulations on the Mechanical Response of the Isothermally Aged Lead-Free Solders
,”
Proc. Inst. Mech. Eng., Part L: J. Mater.: Des. Appl.
,
237
(
11
), pp.
2421
2431
.10.1177/14644207231179564
18.
Gharaibeh
,
M. A.
,
2024
, “
Finite-Element Stress and Strain Analysis of Tin–Silver–Copper Solders Exposed to Isothermal Ageing at 100 °C
,”
Weld. Int.
,
38
(
7
), pp.
481
492
.10.1080/09507116.2024.2368866
19.
Gharaibeh
,
M. A.
, and
Wilde
,
J.
,
2024
, “
Applying Anand Versus Garofalo Creep Constitutive Models for Simulating Sintered Silver Die Attachments in Power Electronics
,”
J. Strain Anal. Eng. Des.
,
59
(
1
), pp.
31
43
.10.1177/03093247231190449
20.
Gharaibeh
,
M. A.
, and
Wilde
,
J.
,
2023
, “
Numerical Evaluation of Sintered Silver Die Attachments Based on Different Material Parameters and Creep Constitutive Models
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
13
(
8
), pp.
1187
1201
.10.1109/TCPMT.2023.3298744
21.
Anand
,
L.
,
1985
, “
Constitutive Equations for Hot-Working of Metals
,”
Int. J. Plast.
,
1
(
3
), pp.
213
231
.10.1016/0749-6419(85)90004-X
22.
Johnson
,
Z. E.
,
2012
, “
A Compilation of Anand Parameters for Selected SnPb and Pb-Free Solder Alloys
,” Report.10.13140/RG.2.2.10895.00166
23.
Ma
,
H.
, and
Suhling
,
J. C.
,
2009
, “
A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging
,”
J. Mater. Sci.
,
44
(
5
), pp.
1141
1158
.10.1007/s10853-008-3125-9
24.
Gharaibeh
,
M. A.
,
Feisst
,
M.
, and
Wilde
,
J.
,
2024
, “
Anand Constitutive Modeling of Multilayer Silver-Tin Transient Liquid Phase Foils Using Tensile and Creep Testing
,”
Soldering Surf. Mount Technol.
,
36
(
2
), pp.
132
143
.10.1108/SSMT-10-2023-0061
25.
Motalab
,
M.
,
Cai
,
Z.
,
Suhling
,
J. C.
, and
Lall
,
P.
,
2012
, “
Determination of Anand Constants for SAC Solders Using Stress-Strain or Creep Data
,”
13th InterSociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, San Diego, CA, May 30–June 1, pp.
910
922
.10.1109/ITHERM.2012.6231522
26.
Gharaibeh
,
M. A.
, and
Wilde
,
J.
,
2024
, “
Experiments, Constitutive Modeling, and Simulations on the Creep Behavior of the AgSn Transient Liquid Phase Metallic Bonds
,”
Microelectron. Reliab.
,
154
, p.
115327
.10.1016/j.microrel.2024.115327
27.
Xu
,
Y.
,
Zeng
,
Q.
,
Wang
,
Y.
,
Wu
,
M.
,
Chen
,
X.
, and
Chen
,
G.
,
2023
, “
The Discussion About the Identification of the Anand Model Parameters and Two Alternative Identification Methods
,”
ASME J. Electron. Packag.
,
145
(
1
), p.
011205
.10.1115/1.4054821
28.
Xu
,
Y.
,
Wang
,
X.
,
Wang
,
X.
,
Zeng
,
Q.
, and
Wu
,
M.
,
2024
, “
The Prediction Method for the Saturation Stress of Materials Used in the Anand Model Parameters Identification
,”
J. Mech. Sci. Technol.
,
38
(
4
), pp.
1775
1787
.10.1007/s12206-024-0312-9
29.
Gharaibeh
,
M. A.
, and
Wilde
,
J.
,
2024
, “
Research on the Creep Response of Lead-Free Die Attachments in Power Electronics
,”
Int. J. Struct. Integr.
,
15
(
4
), pp.
702
716
.10.1108/IJSI-01-2024-0005
30.
Gharaibeh
,
M. A.
, and
Wilde
,
J.
,
2024
, “
A Study on the Thermomechanical Response of Various Die Attach Metallic Materials of Power Electronics
,”
Soldering Surf. Mount Technol.
,
36
(
3
), pp.
192
199
.10.1108/SSMT-12-2023-0068
31.
Gharaibeh
,
M. A.
,
2023
, “
Numerical Characterization of the Mechanical Performance of SAC105 Tin-Silver-Copper Solder Interconnections After Aging
,”
Ann. Chim. Sci. Matér.
,
47
(
6
), pp.
383
391
.10.18280/acsm.470604
32.
Gharaibeh
,
M.
,
2018
, “
Reliability Assessment of Electronic Assemblies Under Vibration by Statistical Factorial Analysis Approach
,”
Soldering Surf. Mount Technol.
,
30
(
3
), pp.
171
181
.10.1108/SSMT-10-2017-0036
33.
Gharaibeh
,
M.
,
2018
, “
Finite Element Model Updating of Board-Level Electronic Packages by Factorial Analysis and Modal Measurements
,”
Microelectron. Int.
,
35
(
2
), pp.
74
84
.10.1108/MI-12-2016-0086
34.
Montgomery
,
D. C.
, and
Runger
,
G. C.
,
2020
,
Applied Statistics and P for Engineers
,
Wiley
, Hoboken, NJ.
You do not currently have access to this content.