Abstract

Low-silver solders are increasingly being used because silver improves the tensile strength. In this study, the variation in fracture behavior with silver content in lead-free solder joints was studied using double cantilever beam specimens. Fracture tests were done with solder joints made with Sn-0.7Cu, SACX0307, and SAC305 solder materials. The critical energy release rate for crack-initiation (Gci) of the joint was correlated with the plastic zone just ahead of the precrack tip, intermetallic compound layer thickness, energy dispersive spectroscopy analysis, and scanning electron microscopy based fractography study. The Gci for Sn-0.7Cu solder joint was observed to be significantly higher than the other two solder joints. The fractography study revealed that the failure was ductile for Sn-0.7Cu and a mix of ductile and brittle for the other two solder joints. The extent of the plastic zone ahead of the crack tip, obtained from finite element modeling, was found to be significantly larger and the intermetallic compound layer was relatively thinner for Sn-0.7Cu solder joint compared to the other two solder joints. The ductile failure, significantly larger plastic zone size and thinner intermetallic compound layer resulted in significantly higher Gci for Sn-0.7Cu solder joint.

References

1.
Cheng
,
S.
,
Huang
,
C. M.
, and
Pecht
,
M.
,
2017
, “
A Review of Lead-Free Solders for Electronics Applications
,”
Microelectron. Reliab.
,
75
, pp.
77
95
.10.1016/j.microrel.2017.06.016
2.
Zenin
,
V. V.
,
Belyaev
,
V. N.
,
Segal
,
Y. E.
, and
Kolbenkov
,
A. A.
,
2003
, “
Lead-Free Solders in IC Manufacture: A Review 32
,”
Russ. Microelectron.
,
32
(
4
), pp.
247
256
.10.1023/A:1024579616706
3.
Abtew
,
M.
, and
Selvaduray
,
G.
,
2000
, “
Lead-Free Solders in Microelectronics
,”
Mater. Sci. Eng. R Rep.
,
27
(
5–6
), pp.
95
141
.10.1016/S0927-796X(00)00010-3
4.
Ma
,
H.
, and
Suhling
,
ÆJ. C.
,
2009
, “
A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging
,”
J. Mater. Sci.
,
44
(
5
), pp.
1141
1158
.10.1007/s10853-008-3125-9
5.
Shnawah
,
D. A.
,
Sabri
,
M. F. M.
, and
Badruddin
,
I. A.
,
2012
, “
A Review on Thermal Cycling and Drop Impact Reliability of SAC Solder Joint in Portable Electronic Products
,”
Microelectron. Reliab
,.
52
(
1
), pp.
90
99
.10.1016/j.microrel.2011.07.093
6.
Nadimpalli
,
S. P. V.
, and
Spelt
,
J. K.
,
2011
, “
Effect of Geometry on the Fracture Behavior of Lead-Free Solder Joints
,”
Eng. Fract. Mech.
,
78
(
6
), pp.
1169
1181
.10.1016/j.engfracmech.2011.01.026
7.
Nourani
,
A.
, and
Spelt
,
J. K.
,
2015
, “
Combined Effect of Strain-Rate and Mode-Ratio on the Fracture of Lead-Free Solder Joints
,”
Mater. Des.
,
85
, pp.
115
126
.10.1016/j.matdes.2015.06.134
8.
Nadimpalli
,
S. P. V.
, and
Spelt
,
J. K.
,
2011
, “
Mixed-Mode Fracture Load Prediction in Lead-Free Solder Joints
,”
Eng. Fract. Mech.
,
78
, pp.
313
333
.10.1016/j.engfracmech.2010.09.011
9.
Nadimpalli
,
S. P. V.
, and
Spelt
,
J. K.
,
2010
, “
R-Curve Behavior of Cu-Sn3.0Ag0.5Cu Solder Joints: Effect of Mode Ratio and Microstructure
,”
Mater. Sci. Eng. A
,
527
(
3
), pp.
724
734
.10.1016/j.msea.2009.08.046
10.
Yoon
,
J. W.
, and
Jung
,
S. B.
,
2004
, “
Effect of Isothermal Aging on Intermetallic Compound Layer Growth at the Interface Between Sn-3.5Ag-0.75Cu Solder and Cu Substrate
,”
J. Mater. Sci.
,
39
(
13
), pp.
4211
4217
.10.1023/B:JMSC.0000033401.38785.73
11.
Seah
,
S. K. W.
,
Wong
,
E. H.
,
Mai
,
Y. W.
,
Rajoo
,
R.
, and
Lim
,
C. T.
,
2006
, “
High-Speed Bend Test Method and Failure Prediction for Drop Impact Reliability
,”
56th Electronic Components and Technology Conference
, San Diego, CA, May 30–June 2, pp.
1003
1008
.10.1109/ECTC.2006.1645776
12.
Chong
,
D.
,
Che
,
F. X.
,
Pang
,
J.
,
Ng
,
K.
,
Tan
,
J.
, and
Low
,
P.
,
2006
, “
Drop Impact Reliability Testing for Lead-Free and Lead-Based Soldered IC Packages
,”
Microelectron. Reliab.
,
46
(
7
), pp.
1160
1171
.10.1016/j.microrel.2005.10.011
13.
Kim
,
J. W.
, and
Jung
,
S. B.
,
2004
, “
Experimental and Finite Element Analysis of the Shear Speed Effects on the Sn-Ag and Sn-Ag-Cu BGA Solder Joints
,”
Mater. Sci. Eng. A
,
371
(
1–2
), pp.
267
276
.10.1016/j.msea.2003.12.012
14.
Newman
,
K.
,
2005
, “
BGA Brittle fracture - Alternative Solder Joint Integrity Test Methods
,”
Proceedings of Electronic Components and Technology Conference
, Vol.
2
, ECTC '05, Lake Buena Vista, FL, May 31–June 3, pp.
1194
1201
.10.1109/ECTC.2005.1441422
15.
Wang
,
S.
,
Yao
,
Y.
, and
Wang
,
W.
,
2018
, “
Microstructure and Size Effect of Interfacial Intermetallic on Fracture Toughness of Sn3.0Ag0.5Cu Solder Interconnects
,”
Eng. Fract. Mech.
,
202
, pp.
259
274
.10.1016/j.engfracmech.2018.09.031
16.
Nadimpalli
,
S. P. V.
, and
Spelt
,
J. K.
,
2010
, “
Fracture Load Prediction of Lead-Free Solder Joints
,”
Eng. Fract. Mech.
,
77
(
17
), pp.
3446
3461
.10.1016/j.engfracmech.2010.09.012
17.
Yamada
,
S. E.
,
1989
, “
A Fracture Mechanics Approach to Soldered Joint Cracking
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
12
(
1
), pp.
99
104
.10.1109/33.19019
18.
Nourani
,
A.
, and
Spelt
,
J. K.
,
2015
, “
Effect of Processing Parameters on Fracture Toughness of Lead-Free Solder Joints
,”
Eng. Fract. Mech.
,
142
, pp.
64
78
.10.1016/j.engfracmech.2015.05.042
19.
Cai
,
Z.
,
Zhang
,
Y.
,
Suhling
,
J. C.
,
Lall
,
P.
,
Johnson
,
R. W.
, and
Bozack
,
M. J.
,
2010
, “
Reduction of Lead Free Solder Aging Effects Using Doped SAC Alloys
,” 2010 Proceedings of 60th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, June 1–4, pp.
1493
1511
.10.1109/ECTC.2010.5490796
20.
Che
,
F. X.
,
Luan
,
J. E.
, and
Baraton
,
X.
,
2008
, “
Effect of Silver Content and Nickel Dopant on Mechanical Properties of Sn-Ag-Based Solders
,”
2008 58th Electronic Components and Technology Conference
, Lake Buena Vista, FL, May 27–30, pp.
485
490
.10.1109/ECTC.2008.4550016
21.
Shnawah
,
D. A.
,
Said
,
S. B. M.
,
Sabri
,
M. F. M.
,
Badruddin
,
I. A.
, and
Che
,
F. X.
,
2012
, “
High-Reliability low-Ag-Content Sn-Ag-Cu Solder Joints for Electronics Applications
,”
J. Electron. Mater.
,
41
(
9
), pp.
2631
2658
.10.1007/s11664-012-2145-z
22.
Zhang
,
Y.
,
Cai
,
Z.
,
Suhling
,
J. C.
,
Lall
,
P.
, and
Bozack
,
M. J.
,
2009
, “
The Effects of SAC Alloy Composition on Aging Resistance and Reliability
,”
2009 59th Electronic Components and Technology Conference
, San Diego, CA, May 26–29, pp.
370
389
.10.1109/ECTC.2009.5074043
23.
Yang
,
L.
,
2013
, “
Effects of Ag Particles Content on Properties of Sn0.7Cu Solder
,”
J. Mater. Sci. Mater. Electron.
,
24
(
5
), pp.
1405
1409
.10.1007/s10854-012-0946-8
24.
Chen
,
H.
,
Chou
,
T.-T.
,
Fleshman
,
C.
, and
Duh
,
J.-G.
,
2019
, “
Investigating the Effect of Ag Content on Mechanical Properties of Sn-Ag-Cu Micro-BGA Joints
,”
J. Electron. Mater.
,
48
(
10
), pp.
6866
6871
.10.1007/s11664-019-07428-8
25.
Lee
,
H.
,
Chen
,
M.
,
Jao
,
H.
, and
Liao
,
T.
,
2003
, “
Influence of Interfacial Intermetallic Compound on Fracture Behavior of Solder Joints
,”
Mat. Sci. Eng. A
,
358
(
1–2
), pp.
134
141
.10.1016/S0921-5093(03)00277-6
26.
Shin
,
C. K.
,
Baik
,
Y. J.
, and
Huh
,
J. Y.
,
2001
, “
Effects of Microstructural Evolution and Intermetallic Layer Growth on Shear Strength of Ball-Grid-Array Sn-Cu Solder Joints
,”
J. Electron. Mater.
,
30
(
10
), pp.
1323
1331
.10.1007/s11664-001-0119-7
27.
So
,
A. C. K.
,
Chan
,
Y. C.
, and
Lai
,
J. K. L.
,
1997
, “
Aging Studies of Cu-Sn Intermetallic Compounds in Annealed Surface Mount Solder Joints
,”
IEEE Trans. Compon. Packag. Manuf. Technol. Part B
,
20
(
2
), pp.
161
166
.10.1109/96.575568
28.
Hu
,
X.
,
Xu
,
T.
,
Jiang
,
X.
,
Li
,
Y.
,
Liu
,
Y.
, and
Min
,
Z.
,
2016
, “
Effects of Post-Reflow Cooling Rate and Thermal Aging on Growth Behavior of Interfacial Intermetallic Compound Between SAC305 Solder and Cu Substrate
,”
Appl. Phys. A
,
122
(
4
), pp.
1
10
.10.1007/s00339-016-9893-1
29.
An
,
T.
, and
Qin
,
F.
,
2016
, “
Relationship Between the Intermetallic Compounds Growth and the Microcracking Behavior of Lead-Free Solder Joints
,”
ASME J. Electron. Packag.
,
138
(
1
), p. 011002.10.1115/1.4032349
30.
ASTM,
2014
, “
Standard Test Method for Mode I Interlaminar Fracture Toughness of Unidirectional Fiber-Reinforced Polymer Matrix Composites
,” ASTM, West Conshohocken, PA, Standard No.
D5528-01
.https://www.astm.org/d5528-01.html
31.
Blackman
,
B. R. K.
,
Kinloch
,
A. J.
,
Paraschi
,
M.
, and
Teo
,
W. S.
,
2003
, “
Measuring the Mode I Adhesive Fracture Energy, GIC, of Structural Adhesive Joints: The Results of an International Round-Robin
,”
Int. J. Adhes. Adhes.
,
23
(
4
), pp.
293
305
.10.1016/S0143-7496(03)00047-2
32.
Sharma
,
V. P.
, and
Datla
,
N. V.
,
2021
, “
Effect of Bond-Line Thickness and Mode-Mixity on the Fracture Behavior and Traction Separation Law of Sn-0.7Cu Solder Joints
,”
Eng. Fail. Anal.
, 131, p.
105855
.10.1016/j.engfailanal.2021.105855
33.
Sharma
,
V. P.
, and
Datla
,
N. V.
,
2021
, “
Effect of Aging Time and Loading Rate on Fracture Behavior of Cu/Sn-0.7Cu Solder Joints
,”
Microelectron. Reliab.
,
127
, p.
114381
.10.1016/j.microrel.2021.114381
34.
Moskala
,
E. J.
,
1992
, “
Fracture Behaviour of Rubber-Toughened Polymer Blends
,”
J. Mater. Sci.
,
27
(
18
), pp.
4883
4889
.10.1007/BF01105250
35.
Johnson
,
W. S.
,
Masters
,
J. E.
,
Kevin O'Brien
,
T.
,
Fernlund
,
G.
, and
Spelt
,
J. K.
,
1994
, “
Mixed Mode Energy Release Rates for Adhesively Bonded Beam Specimens
,”
J. Compos. Technol. Res.
,
16
(
3
), pp.
234
243
.10.1520/CTR10412J
36.
El-daly
,
A. A.
,
El-tantawy
,
F.
,
Hammad
,
A. E.
,
Gaafar
,
M. S.
,
El-mossalamy
,
E. H.
, and
Al-ghamdi
,
A. A.
,
2011
, “
Structural and Elastic Properties of Eutectic Sn – Cu Lead-Free Solder Alloy Containing Small Amount of Ag and in
,”
J. Alloys Compd.
,
509
(
26
), pp.
7238
7246
.10.1016/j.jallcom.2011.01.062
37.
Azari
,
S.
,
Papini
,
M.
, and
Spelt
,
J. K.
,
2011
, “
Effect of Adhesive Thickness on Fatigue and Fracture of Toughened Epoxy Joints – Part I: Experiments
,”
Eng. Fract. Mech.
,
78
(
1
), pp.
153
162
.10.1016/j.engfracmech.2010.06.025
38.
Azari
,
S.
,
Ameli
,
A.
,
Datla
,
N. V.
,
Papini
,
M.
, and
Spelt
,
J. K.
,
2012
, “
Effect of Substrate Modulus on the Fatigue Behavior of Adhesively Bonded Joints
,”
Mater. Sci. Eng. A
,
534
, pp.
594
602
.10.1016/j.msea.2011.12.014
You do not currently have access to this content.