Abstract

The practice of commissioning data centers (DCs) is necessary to confirm the compliance of the cooling system to the information technology equipment (ITE) load (design capacity). In a typical DC, there are different types of ITE, each having its physical characteristics. Considering these geometrical and internal differences among ITE, it is infeasible to use the actual ITE as a self-simulator. Hence, a separate device called load bank is employed for that purpose. Load banks create a dummy thermal load to analyze, test, and stress the cooling infrastructure. Available commercial load banks do not accurately replicate a server's airflow patterns and transient heat signatures which are governed by thermal inertia, energy dissipation, flow resistance, and fan system behavior. In this study, a novel prototype of the server called server simulator was designed and built with different components to be used as a server mockup. The server simulator accurately captured air resistance, heat dissipation, and the functionality of actual server behavior. Experimental data showed up to 93% improvement in ITE passive and active flow curves using the designed server simulator compared to the commercial load bank. Furthermore, the experimental results demonstrated a below 5% discrepancy on the critical back pressure and free delivery point between the actual ITE and the designed server simulator. In addition, experimental data indicated that the developed server simulator improved the actual ITE thermal mass by 27% compared to the commercial load bank.

References

1.
ASHRAE Technical Committee 9.9
,
2015
,
Thermal Guidelines for Data Processing Environments
, 4th ed.,
W. Stephen Comstock
,
Atlanta, GA
.
2.
Alissa
,
H. A.
,
Nemati
,
K.
,
Sammakia
,
B. G.
,
Ghose
,
K.
,
Seymour
,
M.
, and
Schmidt
,
R.
,
2015
, “
Innovative Approaches of Experimentally Guided CFD Modeling for Data Centers
,” 31st Thermal Measurement, Modeling & Management Symposium (
SEMI-THERM
), San Jose, CA, Mar. 15–19, pp.
176
184
.10.1109/SEMI-THERM.2015.7100157
3.
Alkharabsheh
,
S. A.
,
2015
,
Experimental and Analytical Studies of Data Center Thermal Management Under Dynamic Conditions
,
State University of New York at Binghamton
,
Ann Arbor, MI
.
4.
Alkharabsheh
,
S. A.
,
Fernandes
,
J.
,
Gebrehiwot
,
B.
,
Agonafer
,
D.
,
Ghose
,
K.
,
Ortega
,
A.
,
Joshi
,
Y.
, and
Sammakia
,
B. G.
,
2015
, “
A Brief Overview of Recent Developments in Thermal Management in Data Centers
,”
ASME J. Electron. Packag.
,
137
(
4
), p. 040801.10.1115/1.4031326
5.
Song
,
Z.
,
Murray
,
B. T.
, and
Sammakia
,
B. G.
,
2014
, “
Long-Term Transient Thermal Analysis Using Compact Models for Data Center Applications
,”
Int. J. Heat Mass Transfer
,
71
), pp.
69
78
.10.1016/j.ijheatmasstransfer.2013.12.007
6.
Alkharabsheh
,
S. A.
,
Sammakia
,
B. G.
, and
Shrivastava
,
S. K.
,
2015
, “
Experimentally Validated Computational Fluid Dynamics Model for a Data Center With Cold Aisle Containment
,”
ASME J. Electron. Packag.
,
137
(
2
), p.
021010
.10.1115/1.4029344
7.
Alkharabsheh
,
S. A.
,
Ibrahim
,
M.
,
Shrivastava
,
S.
,
Schmidt
,
R.
, and
Sammakia
,
B. G.
,
2012
, “
Transient Analysis for Contained-Cold-Aisle Data Center
,”
ASME
Paper No. IMECE2012-89681.10.1115/IMECE2012-89681
8.
Muralidharan
,
B.
,
Shrivastava
,
S. K.
,
Ibrahim
,
M.
,
Alkharabsheh
,
S. A.
, and
Sammakia
,
B. G.
,
2013
, “
Impact of Cold Aisle Containment on Thermal Performance of Data Center
,”
ASME
Paper No. IPACK2013-73201.10.1115/IPACK2013-73201
9.
Song
,
Z.
,
Murray
,
B. T.
, and
Sammakia
,
B. G.
,
2013
, “
Prediction of Hot Aisle Partition Airflow Boundary Conditions
,”
ASME
Paper No. IPACK2013-73049.10.1115/IPACK2013-73049
10.
Shrivastava
,
S. K.
, and
Ibrahim
,
M.
,
2013
, “
Benefit of Cold Aisle Containment During Cooling Failure
,”
ASME
Paper No. IPACK2013-73219.10.1115/IPACK2013-73219
11.
Nemati
,
K.
,
Alissa
,
H. A.
,
Murray
,
B. T.
,
Sammakia
,
B. G.
,
Tipton
,
R.
, and
Seymour
,
M. J.
,
2017
, “
Comprehensive Experimental and Computational Analysis of a Fully Contained Hybrid Server Cabinet
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
8
), p.
082101
.10.1115/1.4036100
12.
Nemati
,
K.
,
Alissa
,
H. A.
,
Murray
,
B. T.
, and
Sammakia
,
B.
,
2016
, “
Steady-State and Transient Comparison of Cold and Hot Aisle Containment and Chimney
,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 31–June 3, pp.
1435
1443
.10.1109/ITHERM.2016.7517717
13.
Alissa
,
H.
,
Nemati
,
K.
,
Sammakia
,
B. G.
, and
Ghose
,
K.
,
2021
, “
Control Systems and Prediction Methods for It Cooling Performance in Containment
,”
U.S. Patent No. 11,076,509
.
14.
Nemati
,
K.
,
Alissa
,
H.
, and
Sammakia
,
B. G.
,
2015
, “
Performance of Temperature Controlled Perimeter and Row-Based Cooling Systems in Open and Containment Environment
,”
ASME
Paper No. IMECE2015-52667.10.1115/IMECE2015-52667
15.
Mohsenian
,
G.
,
Khalili
,
S.
, and
Sammakia
,
B. G.
,
2019
, “
A Design Methodology for Controlling Local Airflow Delivery in Data Centers Using Air Dampers
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
905
911
.10.1109/ITHERM.2019.8757270
16.
Khalili
,
S.
,
Mohsenian
,
G.
,
Desu
,
A.
,
Ghose
,
K.
, and
Sammakia
,
B. G.
,
2019
, “
Airflow Management Using Active Air Dampers in Presence of a Dynamic Workload in Data Centers
,”
35th Annual Semiconductor Thermal Measurement, Modeling and Management Symposium
(
SEMI-THERM
), San Jose, CA, Mar. 18–22, pp.
101
110
.https://ieeexplore.ieee.org/document/9165298
17.
Mohsenian
,
G.
,
2020
,
A Novel Integrated Fuzzy Control System Towards Automated Local Airflow Management in Data Centers
,
State University of New York at Binghamton
,
Ann Arbor, MI
.
18.
Mohsenian
,
G.
,
Khalili
,
S.
,
Tradat
,
M.
,
Manaserh
,
Y.
,
Rangarajan
,
S.
,
Desu
,
A.
,
Thakur
,
D.
,
Nemati
,
K.
,
Ghose
,
K.
, and
Sammakia
,
B. G.
,
2021
, “
A Novel Integrated Fuzzy Control System Toward Automated Local Airflow Management in Data Centers
,”
Control Eng. Pract.
,
112
, p.
104833
.10.1016/j.conengprac.2021.104833
19.
Zhang
,
X.
,
VanGilder
,
J. W.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2008
, “
Effect of Rack Modeling Detail on the Numerical Results of a Data Center Test Cell
,”
11th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Orlando, FL, May 28–31, pp.
1183
1190
.10.1109/ITHERM.2008.4544395
20.
Ibrahim
,
M.
,
Bhopte
,
S.
,
Sammakia
,
B. G.
,
Murray
,
B. T.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2010
, “
Effect of Thermal Characteristics of Electronic Enclosures on Dynamic Data Center Performance
,”
ASME
Paper No. IMECE2010-40914.10.1115/IMECE2010-40914
21.
Ibrahim
,
M.
,
Bhopte
,
S.
,
Sammakia
,
B. G.
,
Murray
,
B. T.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2012
, “
Effect of Transient Boundary Conditions and Detailed Thermal Modeling of Data Center Rooms
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
2
(
2
), pp.
300
310
.10.1109/TCPMT.2011.2175926
22.
Ibrahim
,
M.
,
Afram
,
F.
,
Sammakia
,
B. G.
,
Ghose
,
K.
,
Murray
,
B. T.
,
Iyengar
,
M.
, and
Schmidt
,
R.
,
2011
, “
Characterization of a Server Thermal Mass Using Experimental Measurements
,”
ASME
Paper No. IPACK2011-52165.10.1115/IPACK2011-52165
23.
VanGilder
,
J. W.
,
Pardey
,
Z.
,
Healey
,
C.
, and
Zhang
,
X.
,
2013
, “
A Compact Server Model for Transient Data Center Simulations
,”
ASHRAE Trans.
,
119
(
2
), pp.
358
370
.
24.
VanGilder
,
J. W.
,
Pardey
,
Z.
,
(Simon) Zhang
,
M. X.
, and
Healey
,
C.
,
2013
, “
Experimental Measurement of Server Thermal Effectiveness for Compact Transient Data Center Models
,”
ASME
Paper No. IPACK2013-73155.10.1115/IPACK2013-73155
25.
Pardey
,
Z. M.
, and
VanGilder
,
J. W.
,
2014
, “
Further Exploration of a Compact Transient Server Model
,” 14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
1322
1329
.10.1109/ITHERM.2014.6892433
26.
Ham
,
S.-W.
,
Kim
,
M.-H.
,
Choi
,
B.-N.
, and
Jeong
,
J.-W.
,
2015
, “
Simplified Server Model to Simulate Data Center Cooling Energy Consumption
,”
Energy Build.
,
86
, pp.
328
339
.10.1016/j.enbuild.2014.10.058
27.
Song
,
Z.
,
Murray
,
B. T.
, and
Sammakia
,
B. G.
,
2013
, “
A Compact Thermal Model for Data Center Analysis Using the Zonal Method
,”
Numer. Heat Transfer, Part A Appl. Taylor Francis
,
64
(
5
), pp.
361
377
.10.1080/10407782.2013.784138
28.
SpitaelsRasmussen
,
J.
,
VanGilder
,
N.
,
Bean
,
J. J.
, and
Susek
,
D.
,
2006
, “
IT Equipment Simulation
,” U.S. Patent No.
US20060121421A1.
29.
Alissa
,
H. A.
,
Nemati
,
K.
,
Sammakia
,
B. G.
,
Schneebeli
,
K.
,
Schmidt
,
R. R.
, and
Seymour
,
M. J.
,
2016
, “
Chip to Facility Ramifications of Containment Solution on IT Airflow and Uptime
,”
IEEE Trans. Compon., Packag. Manuf. Technol.
,
6
(
1
), pp.
67
78
.10.1109/TCPMT.2015.2508453
30.
Alkharabsheh
,
S.
,
Sammakia
,
B. G.
,
Murray
,
B.
,
Shrivastava
,
T. S.
, and
Schmidt
,
R.
,
2014
, “
Experimental Characterization of Pressure Drop in a Server Rack
,” 14th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Orlando, FL, May 27–30, pp.
547
556
.10.1109/ITHERM.2014.6892329
You do not currently have access to this content.