Abstract

The issue of regenerative cooling is one of the most important key technologies of flight vehicles, which is applied into both the engine and high-power electrical equipment. One pattern of regenerative cooling channels is the microchannel heat sinks, which are thought as a prospective means of improving heat removal capacities on electrical equipment of smaller sizes. In this paper, three numerical models with different geometric configurations, namely, straight, zigzag, and sinusoid, respectively, are built to probe into the thermal hydraulic performance while heat transfer mechanism of supercritical methane in microchannel heat sinks for the heat removal of high-power electromechanical actuator is also explored. In addition, some crucial influence factors on heat transfer such as inlet Reynolds number, operating pressure, and heating power are investigated. The calculation results imply the positive effect of wavy configurations on heat transfer and confirm the important effect of buoyancy force of supercritical methane in channels. The heat sinks with wavy channel show obvious advantages on comprehensive thermal performance including overall thermal performance parameter η and thermal resistance R compared with that of the straight one. The highest Nu and average heat transfer coefficient αm appear in the heat sink with zigzag channels, but the pumping power of the heat sink with sinusoidal channels is lower due to the smaller flow loss.

References

1.
Yang
,
W.
, and
Sun
,
B.
,
2013
, “
Numerical Simulation of Liquid Film and Regenerative Cooling in a Liquid Rocket
,”
Appl. Therm. Eng.
,
54
(
2
), pp.
460
469
.10.1016/j.applthermaleng.2013.02.021
2.
Pizzarelli
,
M.
,
Nasuti
,
F.
,
Onofri
,
M.
,
Roncioni
,
P.
,
Votta
,
R.
, and
Battista
,
F.
,
2015
, “
Heat Transfer Modeling for Supercritical Methane Flowing in Rocket Engine Cooling Channels
,”
Appl. Therm. Eng.
,
75
, pp.
600
607
.10.1016/j.applthermaleng.2014.10.008
3.
Gao
,
Z.
,
Bai
,
J.
,
Zhou
,
J.
,
Wang
,
C.
, and
Li
,
P.
,
2020
, “
Numerical Investigation of Supercritical Methane in Helically Coiled Tube on Regenerative Cooling of Liquid Rocket Electromechanical Actuator
,”
Cryogenics
,
106
, p.
103023
.10.1016/j.cryogenics.2019.103023
4.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Device Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
5.
Hung
,
T.-C.
,
Yan
,
W.-M.
,
Wang
,
X.-D.
, and
Huang
,
Y.-X.
,
2012
, “
Optimal Design of Geometric Parameters of Double-Layered Microchannel Heat Sinks
,”
Int. J. Heat Mass Transfer
,
55
(
11–12
), pp.
3262
3272
.10.1016/j.ijheatmasstransfer.2012.02.059
6.
Lee
,
P. S.
, and
Garimella
,
S. V.
,
2006
, “
Thermally Developing Flow and Heat Transfer in Rectangular Micro-Channels of Different Aspect Ratio
,”
Int. J. Heat Mass Transfer
,
49
(
17–18
), pp.
3060
3067
.10.1016/j.ijheatmasstransfer.2006.02.011
7.
Sui
,
Y.
,
Lee
,
P. S.
, and
Teo
,
C. J.
,
2011
, “
An Experimental Study of Flow Friction and Heat Transfer in Wavy Microchannels With Rectangular Cross Section
,”
Int. J. Therm. Sci.
,
50
(
12
), pp.
2473
2482
.10.1016/j.ijthermalsci.2011.06.017
8.
Peng
,
X. F.
, and
Peterson
,
G. P.
,
1996
, “
Convective Heat Transfer and Flow Friction for Water Flow in Microchannel Structures
,”
Int. J. Heat Mass Transfer
,
39
(
12
), pp.
2599
2608
.10.1016/0017-9310(95)00327-4
9.
Wu
,
H. Y.
, and
Cheng
,
P.
,
2003
, “
Friction Factors in Smooth Trapezoidal Silicon Microchannels With Difference Aspect Ratios
,”
Int. J. Heat Mass Transfer
,
46
(
14
), pp.
2519
2525
.10.1016/S0017-9310(03)00106-6
10.
Pan
,
Y.-H.
,
Zhao
,
R.
,
Fan
,
X.-H.
,
Nian
,
Y.-L.
, and
Cheng
,
W.-L.
,
2020
, “
Study on the Effect of Varying Channel Aspect Ratio on Heat Transfer Performance of Manifold Microchannel Heat Sink
,”
Int. J. Heat Mass Transfer
,
163
, p.
120461
.10.1016/j.ijheatmasstransfer.2020.120461
11.
Mohammadali
,
R.
,
Bayareh
,
M.
, and
Sheikhzadeh
,
G. A.
,
2021
, “
Study of Flow Uniformity Within Convergent Microchannels With a Circular Manifold
,”
J. Braz. Soc. Mech. Sci. Eng.
,
43
(
2
), p.
74
.10.1007/s40430-020-02784-7
12.
Xie
,
X. L.
,
Liu
,
Z. J.
,
He
,
Y. L.
, and
Tao
,
W. Q.
,
2009
, “
Numerical Study of Laminar Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
Appl. Therm. Eng.
,
29
(
1
), pp.
64
74
.10.1016/j.applthermaleng.2008.02.002
13.
Xie
,
X. L.
,
Tao
,
W. Q.
, and
He
,
Y. L.
,
2007
, “
Numerical Study of Turbulent Heat Transfer and Pressure Drop Characteristics in a Water-Cooled Minichannel Heat Sink
,”
ASME J. Electron. Packag.
,
129
(
3
), pp.
247
255
.10.1115/1.2753887
14.
Sarkar
,
J.
,
2019
, “
Improving Thermal Performance of Micro-Channel Heat Sink Using Supercritical CO2 as Coolant
,”
Therm. Sci.
,
23
(
1
), pp.
243
253
.10.2298/TSCI161110030S
15.
Wang
,
L. L.
,
Chen
,
Z. J.
, and
Meng
,
H.
,
2013
, “
Numerical Study of Conjugate Heat Transfer of Cryogenic Methane in Rectangular Engine Cooling Channels at Supercritical Pressures
,”
Appl. Therm. Eng.
,
54
(
1
), pp.
237
246
.10.1016/j.applthermaleng.2013.02.007
16.
Xu
,
K. K.
,
Ruan
,
B.
, and
Meng
,
H.
,
2014
, “
A Thermal Performance Factor for Evaluation of Active Engine Cooling With Asymmetric Heating
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
351
356
.10.1016/j.applthermaleng.2014.07.066
17.
Saeed
,
M.
,
Berrouk
,
A. S.
,
AlShehhi
,
M. S.
, and
AlWahedi
,
Y. F.
,
2021
, “
Numerical Investigation of the Thermohydraulic Characteristics of Microchannel Heat Sinks Using Supercritical CO2 as a Coolant
,”
J. Supercrit. Fluids
,
176
, p.
105306
.10.1016/j.supflu.2021.105306
18.
Amin
,
E.
,
Ehsan
,
R.
, and
Saeid
,
K.
,
2015
, “
Numerical Study of Liquid Flow and Heat Transfer in Rectangular Microchannel With Longitudinal Vortex Generators
,”
Appl. Therm. Eng.
,
78
(
5
), pp.
576
583
.10.1016/j.applthermaleng.2014.12.006
19.
Gang
,
W.
,
Pan
,
J.
,
Bi
,
Q.
,
Yang
,
Z.
, and
Wang
,
H.
,
2014
, “
Heat Transfer Characteristics of Supercritical Pressure Water in Vertical Upward Annuli
,”
Nucl. Eng. Des.
,
273
, pp.
449
458
.10.1016/j.nucengdes.2014.03.038
20.
Bai
,
J.
,
Pan
,
J.
,
Wu
,
G.
, and
Tang
,
L.
,
2019
, “
Numerical Analysis on Heat Transfer of Supercritical Pressure LNG in Serpentine Tube
,”
Cryogenics
,
101
, pp.
101
110
.10.1016/j.cryogenics.2019.06.010
21.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X.-D.
, and
Yan
,
W.-M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
.10.1016/j.ijthermalsci.2017.05.013
22.
Lemmon, E. W., Huber, M. L., and McLinden, M. O., 2013, “NIST Reference Fluid Thermodynamic and Transport Properties Database (REFPROP),” National Institute of Standards and Technology, Gaithersburg, MD, accessed Jan. 17, 2022, https://www.nist.gov/srd/refprop
23.
Sivasankaran
,
S.
, and
Narrein
,
K.
,
2020
, “
Influence of Geometry and Magnetic Field on Convective Flow of Nanofluids in Trapezoidal Microchannel Heat Sink
,”
Iran. J. Sci. Technol. Trans. Mech. Eng.
,
44
(
2
), pp.
373
382
.10.1007/s40997-018-0258-6
24.
ANSYS
,
2013
,
ANSYS Fluent Theory Guide
,
ANSYS
, Pittsburgh, PA.
25.
Bai
,
J.
,
Pan
,
J.
,
He
,
X.
,
Wang
,
K.
,
Tang
,
L.
, and
Yang
,
R.
,
2020
, “
Numerical Investigation on Thermal Hydraulic Performance of Supercritical LNG in Sinusoidal Wavy Channel Based Printed Circuit Vaporizer
,”
Appl. Therm. Eng.
,
175
, p.
115379
.10.1016/j.applthermaleng.2020.115379
26.
Hung
,
T. C.
, and
Yan
,
W. M.
,
2012
, “
Optimization of a Microchannel Heat Sink With Varying Channel Heights and Widths
,”
Numer. Heat Transfer Part A
,
62
(
9
), pp.
722
741
.10.1080/10407782.2012.709437
27.
Hatami
,
M.
, and
Ganji
,
D. D.
,
2014
, “
Thermal and Flow Analysis of Microchannel Heat Sink (MCHS) Cooled by Cu-Water Nanofluid Using Porous Media Approach and Least Square Method
,”
Energy Convers. Manage.
,
78
, pp.
347
358
.10.1016/j.enconman.2013.10.063
28.
Ackermam
,
J. W.
,
1970
, “
Pseudoboiling Heat Transfer to Supercritical Pressure Water in Smooth and Ribbed Tubes
,”
ASME J. Heat Transfer-Trans. ASME
,
92
, pp.
490
497
.10.1115/1.3449698
29.
Yamagata
,
K.
,
Nishikawa
,
K.
,
Hasegawa
,
S.
,
Fujii
,
T.
, and
Yoshida
,
S.
,
1972
, “
Forced Convective Heat Transfer to Supercritical Water Flowing in Tubes
,”
Int. J. Heat Mass Transfer
,
15
(
12
), pp.
2575
2593
.10.1016/0017-9310(72)90148-2
30.
Xie
,
G.
,
Liu
,
J.
,
Liu
,
Y.
,
Sunden
,
B.
, and
Zhang
,
W.
,
2013
, “
Comparative Study of Thermal Performance of Longitudinal and Transversal-Wavy Microchannel Heat Sinks for Electronic Cooling
,”
ASME J. Electron. Packag.
,
135
(
2
), p.
021008
.10.1115/1.4023530
31.
Xie
,
G.
,
Li
,
Y.
,
Zhang
,
F.
, and
Sundén
,
B.
,
2016
, “
Analysis of Micro-Channel Heat Sinks With Rectangular Shaped Flow Obstructions
,”
Numer. Heat Transfer Part A
,
69
(
4
), pp.
335
351
.10.1080/10407782.2015.1080580
32.
Jackson
,
J. D.
,
2013
, “
Fluid Flow and Convective Heat Transfer to Fluids at Supercritical Pressure
,”
Nucl. Eng. Des.
,
264
, pp.
24
40
.10.1016/j.nucengdes.2012.09.040
33.
Jackson
,
J. D.
,
2017
, “
Models of Heat Transfer to Fluids at Supercritical Pressure With Influences of Buoyancy and Acceleration
,”
Appl. Therm. Eng.
,
124
, pp.
1481
1491
.10.1016/j.applthermaleng.2017.03.146
34.
Fan
,
Y. H.
,
Tang
,
G. H.
,
Li
,
X. L.
,
Yang
,
D. L.
, and
Wang
,
S. Q.
,
2019
, “
Correlation Evaluation on Circumferentially Average Heat Transfer for Supercritical Carbon Dioxide in Non-Uniform Heating Vertical Tubes
,”
Energy
,
170
, pp.
480
496
.10.1016/j.energy.2018.12.151
35.
Huang
,
D.
,
Wu
,
Z.
,
Sunden
,
B.
, and
Li
,
W.
,
2016
, “
A Brief Review on Convection Heat Transfer of Fluids at Supercritical Pressures in Tubes and the Recent Progress
,”
Appl. Energy
,
162
, pp.
494
505
.10.1016/j.apenergy.2015.10.080
36.
Metais
,
B.
, and
Eckert
,
E. R. G.
,
1964
, “
Forced, Mixed and Free Convection Regimes
,”
Trans. ASME, J. Heat Transfer
,
86
(
2
), pp.
295
300
.10.1115/1.3687128
You do not currently have access to this content.