Abstract

Miniaturization of electronic components requires compact and effective cooling techniques to dissipate large heat flux without a significant increase in pumping power. Microchannel heat sink with liquid as working fluid is a suitable technique for the purpose. In this study, heat transfer characteristics in presence of vertical bifurcation placed downstream of the microchannel passage are studied numerically. Six types of bifurcating plates are considered under two categories: (i) thick-plate and (ii) wavy thin-wall. Water is taken as the working fluid and the flow rate has been varied in the Reynolds number range, 100 ≤ Re ≤ 1000. The effect of bifurcations on pressure drop, heat transfer, and the overall thermal resistance are analyzed and compared with those of plane microchannel without bifurcation. The numerical results show that the usage of bifurcation in the microchannel reduces the overall thermal resistance. Field synergy number, entropy generation number, and hydrothermal performance index are calculated to quantify the overall performance improvement in the microchannel with bifurcations. Constant wavy thin-wall bifurcation has been found to improve the overall performance of the microchannel. The detailed geometry of the bifurcation, the resulting convective heat transfer characteristics, and percentage improvement in the performance are reported.

References

1.
Collins
,
I. L.
,
Weibel
,
J. A.
,
Pan
,
L.
, and
Garimella
,
S. V.
,
2019
, “
A Permeable-Membrane Microchannel Heat Sink Made by Additive Manufacturing
,”
Int. J. Heat Mass Transfer
,
131
, pp.
1174
1183
.10.1016/j.ijheatmasstransfer.2018.11.126
2.
Hoang
,
C. H.
,
Rangarajan
,
S.
,
Khalili
,
S.
,
Ramakrisnan
,
B.
,
Radmard
,
V.
,
Hadad
,
Y.
,
Schiffres
,
S.
, and
Sammakia
,
B.
,
2021
, “
Hybrid Microchannel/Multi-Jet Two-Phase Heat Sink: A Benchmark and Geometry Optimization Study of Commercial Product
,”
Int. J. Heat Mass Transfer
,
169
, p.
120920
.10.1016/j.ijheatmasstransfer.2021.120920
3.
Aubin
,
P.
,
D'Entremont
,
B.
,
Cataldo
,
F.
,
Marcinichen
,
J. B.
,
Amalfi
,
R. L.
, and
Thome
,
J. R.
,
2019
, “
Numerical Simulations of Pulsating Heat Pipes, Part 1: Modeling
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Las Vegas, NV, May 28–31, pp.
232
242
.10.1109/ITHERM.2019.8757388
4.
Liang
,
G.
, and
Mudawar
,
I.
,
2017
, “
Review of Spray Cooling–Part 1: Single-Phase and Nucleate Boiling Regimes, and Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
115
, pp.
1174
1205
.10.1016/j.ijheatmasstransfer.2017.06.029
5.
Clark
,
M. D.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2019
, “
Identification of Nucleate Boiling as the Dominant Heat Transfer Mechanism During Confined Two-Phase Jet Impingement
,”
Int. J. Heat Mass Transfer
,
128
, pp.
1095
1101
.10.1016/j.ijheatmasstransfer.2018.09.058
6.
Ganatra
,
Y.
,
Ruiz
,
J.
,
Howarter
,
J. A.
, and
Marconnet
,
A.
,
2018
, “
Experimental Investigation of Phase Change Materials for Thermal Management of Handheld Devices
,”
Int. J. Therm. Sci.
,
129
, pp.
358
364
.10.1016/j.ijthermalsci.2018.03.012
7.
An
,
X.
,
Arora
,
M.
,
Huang
,
W.
,
Brantley
,
W. C.
, and
Greathouse
,
J. L.
,
2018
, “
3D Numerical Analysis of Two-Phase Immersion Cooling for Electronic Components
,” 17th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), San Diego, CA, May 29–June 1, pp.
609
614
.10.1109/ITHERM.2018.8419528
8.
Tuckerman
,
D. B.
, and
Pease
,
R. F. W.
,
1981
, “
High-Performance Heat Sinking for VLSI
,”
IEEE Electron Dev. Lett.
,
2
(
5
), pp.
126
129
.10.1109/EDL.1981.25367
9.
Peng
,
X. F.
,
Peterson
,
G. P.
, and
Wang
,
B. X.
,
1994
, “
Frictional Flow Characteristics of Water Flowing Through Rectangular Microchannels
,”
Exp. Heat Transfer Int. J.
,
7
(
4
), pp.
249
264
.10.1080/08916159408946484
10.
Pfund
,
D.
,
Rector
,
D.
,
Shekarriz
,
A.
,
Popescu
,
A.
, and
Welty
,
J.
,
2000
, “
Pressure Drop Measurements in a Microchannel
,”
AIChE J.
,
46
(
8
), pp.
1496
1507
.10.1002/aic.690460803
11.
Qu
,
W.
, and
Mudawar
,
I.
,
2002
, “
Experimental and Numerical Study of Pressure Drop and Heat Transfer in a Single-Phase Micro-Channel Heat Sink
,”
Int. J. Heat Mass Transfer
,
45
(
12
), pp.
2549
2565
.10.1016/S0017-9310(01)00337-4
12.
Liu
,
D.
, and
Garimella
,
S. V.
,
2004
, “
Investigation of Liquid Flow in Microchannels
,”
J. Thermophys. Heat Transfer
,
18
(
1
), pp.
65
72
.10.2514/1.9124
13.
Lee
,
P. S.
,
Garimella
,
S. V.
, and
Liu
,
D.
,
2005
, “
Investigation of Heat Transfer in Rectangular Microchannels
,”
Int. J. Heat Mass Transfer
,
48
(
9
), pp.
1688
1704
.10.1016/j.ijheatmasstransfer.2004.11.019
14.
Zhai
,
Y.
,
Xia
,
G.
,
Li
,
Z.
, and
Wang
,
H.
,
2017
, “
Experimental Investigation and Empirical Correlations of Single and Laminar Convective Heat Transfer in Microchannel Heat Sinks
,”
Exp. Therm. Fluid Sci.
,
83
, pp.
207
214
.10.1016/j.expthermflusci.2017.01.005
15.
Chen
,
Y.
,
Zhang
,
C.
,
Shi
,
M.
, and
Wu
,
J.
,
2009
, “
Three-Dimensional Numerical Simulation of Heat and Fluid Flow in Noncircular Microchannel Heat Sinks
,”
Int. Commun. Heat Mass Transfer
,
36
(
9
), pp.
917
920
.10.1016/j.icheatmasstransfer.2009.06.004
16.
Gunnasegaran
,
P.
,
Mohammed
,
H. A.
,
Shuaib
,
N. H.
, and
Saidur
,
R.
,
2010
, “
The Effect of Geometrical Parameters on Heat Transfer Characteristics of Microchannels Heat Sink With Different Shapes
,”
Int. Commun. Heat Mass Transfer
,
37
(
8
), pp.
1078
1086
.10.1016/j.icheatmasstransfer.2010.06.014
17.
Alfaryjat
,
A. A.
,
Mohammed
,
H. A.
,
Adam
,
N. M.
,
Ariffin
,
M. K. A.
, and
Najafabadi
,
M. I.
,
2014
, “
Influence of Geometrical Parameters of Hexagonal, Circular, and Rhombus Microchannel Heat Sinks on the Thermohydraulic Characteristics
,”
Int. Commun. Heat Mass Transfer
,
52
, pp.
121
131
.10.1016/j.icheatmasstransfer.2014.01.015
18.
Wang
,
H.
,
Chen
,
Z.
, and
Gao
,
J.
,
2016
, “
Influence of Geometric Parameters on Flow and Heat Transfer Performance of Micro-Channel Heat Sinks
,”
Appl. Therm. Eng.
,
107
, pp.
870
879
.10.1016/j.applthermaleng.2016.07.039
19.
Sharma
,
J. P.
,
Sharma
,
A.
,
Jilte
,
R. D.
,
Kumar
,
R.
, and
Ahmadi
,
M. H.
,
2020
, “
A Study on Thermohydraulic Characteristics of Fluid Flow Through Microchannels
,”
J. Therm. Anal. Calorim.
,
140
(
1
), pp.
1
32
.10.1007/s10973-019-08741-4
20.
Wei
,
X. J.
,
Joshi
,
Y. K.
, and
Ligrani
,
P. M.
,
2007
, “
Numerical Simulation of Laminar Flow and Heat Transfer Inside a Microchannel With One Dimpled Surface
,”
ASME J. Electron. Packag.
,
129
(
1
), pp.
63
70
.10.1115/1.2429711
21.
Toghraie
,
D.
,
Abdollah
,
M. M. D.
,
Pourfattah
,
F.
,
Akbari
,
O. A.
, and
Ruhani
,
B.
,
2018
, “
Numerical Investigation of Flow and Heat Transfer Characteristics in Smooth, Sinusoidal and Zigzag-Shaped Microchannel With and Without Nanofluid
,”
J. Therm. Anal. Calorim.
,
131
(
2
), pp.
1757
1766
.10.1007/s10973-017-6624-6
22.
Feng
,
Z.
,
Ai
,
X.
,
Wu
,
P.
,
Lin
,
Q.
, and
Huang
,
Z.
,
2020
, “
Experimental Investigation of Laminar Flow and Heat Transfer Characteristics in Square Minichannels With Twisted Tapes
,”
Int. J. Heat Mass Transfer
,
158
, p.
119947
.10.1016/j.ijheatmasstransfer.2020.119947
23.
Wang
,
X.
,
Mujumdar
,
A. S.
, and
Yap
,
C.
,
2006
, “
Numerical Analysis of Blockage and Optimization of Heat Transfer Performance of Fractal-Like Microchannel Nets
,”
ASME J. Electron. Packag.
,
128
(
1
), pp.
38
45
.10.1115/1.2159007
24.
Ansari
,
D.
, and
Kim
,
K. Y.
,
2016
, “
Double-Layer Microchannel Heat Sinks With Transverse-Flow Configurations
,”
ASME J. Electron. Packag.
,
138
(
3
), p. 031005.10.1115/1.4033558
25.
Kumar
,
R.
,
Singh
,
G.
, and
Mikielewicz
,
D.
,
2019
, “
Numerical Study on Mitigation of Flow Maldistribution in Parallel Microchannel Heat Sink: Channels Variable Width Versus Variable Height Approach
,”
ASME J. Electron. Packag.
,
141
(
2
), p. 021009.10.1115/1.4043158
26.
Xie
,
Y.
,
Shen
,
Z.
,
Zhang
,
D.
, and
Lan
,
J.
,
2014
, “
Thermal Performance of a Water-Cooled Microchannel Heat Sink With Grooves and Obstacles
,”
ASME J. Electron. Packag.
,
136
(
2
), p. 021001.10.1115/1.4025757
27.
Wang
,
X.
,
Yap
,
C.
, and
Mujumdar
,
A. S.
,
2005
, “
Effects of Two-Dimensional Roughness in Flow in Microchannels
,”
ASME J. Electron. Packag.
,
127
(
3
), pp.
357
361
.10.1115/1.1997164
28.
Mohammadi
,
A.
, and
Koşar
,
A.
,
2020
, “
The Effect of Arrangement Type and Pitch Ratio on the Performance of Micro-Pin-Fin Heat Sinks
,”
J. Therm. Anal. Calorim.
,
140
(
3
), pp.
1057
1068
.10.1007/s10973-019-08840-2
29.
He
,
Z.
,
Yan
,
Y.
,
Feng
,
S.
,
Li
,
X.
, and
Yang
,
Z.
,
2021
, “
Numerical Study of Thermal Enhancement in a Micro-Heat Sink With Ribbed Pin-Fin Arrays
,”
J. Therm. Anal. Calorim.
,
143
(
3
), p.
2163
.10.1007/s10973-020-09739-z
30.
Akbari
,
O. A.
,
Khodabandeh
,
E.
,
Kahbandeh
,
F.
,
Toghraie
,
D.
, and
Khalili
,
M.
,
2019
, “
Numerical Investigation of Heat Transfer of Nanofluid Flow Through a Microchannel With Heat Sinks and Sinusoidal Cavities by Using Novel Nozzle Structure
,”
J. Therm. Anal. Calorim.
,
138
(
1
), pp.
737
752
.10.1007/s10973-019-08227-3
31.
Amini
,
Y.
,
Akhavan
,
S.
, and
Izadpanah
,
E.
,
2020
, “
A Numerical Investigation on the Heat Transfer Characteristics of Nanofluid Flow in a Three-Dimensional Microchannel With Harmonic Rotating Vortex Generators
,”
J. Therm. Anal. Calorim.
,
139
(
1
), pp.
755
764
.10.1007/s10973-019-08402-6
32.
Bazdar
,
H.
,
Toghraie
,
D.
,
Pourfattah
,
F.
,
Akbari
,
O. A.
,
Nguyen
,
H. M.
, and
Asadi
,
A.
,
2020
, “
Numerical Investigation of Turbulent Flow and Heat Transfer of Nanofluid Inside a Wavy Microchannel With Different Wavelengths
,”
J. Therm. Anal. Calorim.
,
139
(
3
), pp.
2365
2380
.10.1007/s10973-019-08637-3
33.
Li
,
Y.
,
Zhang
,
F.
,
Sunden
,
B.
, and
Xie
,
G.
,
2014
, “
Laminar Thermal Performance of Microchannel Heat Sinks With Constructal Vertical Y-Shaped Bifurcation Plates
,”
Appl. Therm. Eng.
,
73
(
1
), pp.
185
195
.10.1016/j.applthermaleng.2014.07.031
34.
Shen
,
H.
,
Wang
,
C. C.
, and
Xie
,
G.
,
2018
, “
A Parametric Study on Thermal Performance of Microchannel Heat Sinks With Internally Vertical Bifurcations in Laminar Liquid Flow
,”
Int. J. Heat Mass Transfer
,
117
, pp.
487
497
.10.1016/j.ijheatmasstransfer.2017.10.025
35.
Xie
,
G.
,
Zhang
,
F.
,
Sundén
,
B.
, and
Zhang
,
W.
,
2014
, “
Constructal Design and Thermal Analysis of Microchannel Heat Sinks With Multistage Bifurcations in Single-Phase Liquid Flow
,”
Appl. Therm. Eng.
,
62
(
2
), pp.
791
802
.10.1016/j.applthermaleng.2013.10.042
36.
Lin
,
L.
,
Zhao
,
J.
,
Lu
,
G.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2017
, “
Heat Transfer Enhancement in Microchannel Heat Sink by Wavy Channel With Changing Wavelength/Amplitude
,”
Int. J. Therm. Sci.
,
118
, pp.
423
434
.10.1016/j.ijthermalsci.2017.05.013
37.
Sakanova
,
A.
,
Keian
,
C. C.
, and
Zhao
,
J.
,
2015
, “
Performance Improvements of Microchannel Heat Sink Using Wavy Channel and Nanofluids
,”
Int. J. Heat Mass Transfer
,
89
, pp.
59
74
.10.1016/j.ijheatmasstransfer.2015.05.033
38.
Yuan
,
D.
,
Zhou
,
W.
,
Fu
,
T.
, and
Liu
,
C.
,
2020
, “
Experimental and Numerical Investigation of Heat and Mass Transfer in Non-Uniform Wavy Microchannels
,”
Int. J. Therm. Sci.
,
152
, p.
106320
.10.1016/j.ijthermalsci.2020.106320
39.
Lu
,
G.
,
Zhao
,
J.
,
Lin
,
L.
,
Wang
,
X. D.
, and
Yan
,
W. M.
,
2017
, “
A New Scheme for Reducing Pressure Drop and Thermal Resistance Simultaneously in Microchannel Heat Sinks With Wavy Porous Fins
,”
Int. J. Heat Mass Transfer
,
111
, pp.
1071
1078
.10.1016/j.ijheatmasstransfer.2017.04.086
40.
Kumar
,
D. S.
, and
Jayavel
,
S.
,
2021
, “
Microchannel With Waviness at Selective Locations for Liquid Cooling of Microelectromechanical Devices
,”
J. Appl. Fluid Mech.
,
14
(
3
), pp.
935
948
.10.47176/jafm.14.03.31874
41.
Gong
,
L.
,
Kota
,
K.
,
Tao
,
W.
, and
Joshi
,
Y.
,
2011
, “
Parametric Numerical Study of Flow and Heat Transfer in Microchannels With Wavy Walls
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
5
), p. 051702.10.1115/1.4003284
42.
Sui
,
Y.
,
Teo
,
C. J.
,
Lee
,
P. S.
,
Chew
,
Y. T.
, and
Shu
,
C.
,
2010
, “
Fluid Flow and Heat Transfer in Wavy Microchannels
,”
Int. J. Heat Mass Transfer
,
53
(
13–14
), pp.
2760
2772
.10.1016/j.ijheatmasstransfer.2010.02.022
43.
Sahar
,
A. M.
,
Özdemir
,
M. R.
,
Fayyadh
,
E. M.
,
Wissink
,
J.
,
Mahmoud
,
M. M.
, and
Karayiannis
,
T. G.
,
2016
, “
Single Phase Flow Pressure Drop and Heat Transfer in Rectangular Metallic Microchannels
,”
Appl. Therm. Eng.
,
93
, pp.
1324
1336
.10.1016/j.applthermaleng.2015.08.087
44.
Shah
,
R. K.
, and
London
,
A. L.
,
1978
,
Laminar Flow Forced Convection in Ducts
, Vol.
1
,
Academic Press
,
New York
.
45.
Berger
,
S. A.
,
Talbot
,
L.
, and
Yao
,
L. S.
,
1983
, “
Flow in Curved Pipes
,”
Annu. Review Fluid Mech.
,
15
(
1
), pp.
461
512
.10.1146/annurev.fl.15.010183.002333
46.
Dean
,
W. R.
,
1928
, “
The Streamline Motion of Fluid in a Curved Pipe
,”
Phil. Mag.
,
5
(
30
), pp.
673
693
.10.1080/14786440408564513
47.
Bejan
,
A.
,
1996
,
Entropy Generation Minimization
,
CRC Press
,
Boca Raton, NY
.
48.
Khan
,
W. A.
,
Yovanovich
,
M. M.
, and
Culham
,
J. R.
,
2006
, “
Optimization of Microchannel Heat Sinks Using Entropy Generation Minimization Method
,”
Twenty-Second Annual IEEE Semiconductor Thermal Measurement and Management Symposium,
Dallas, TX, Mar. 14–16, pp.
78
86
.10.1109/STHERM.2006.1625210
49.
Hamid
,
M. O.
,
Zhang
,
B.
, and
Yang
,
L.
,
2014
, “
Application of Field Synergy Principle for Optimization Fluid Flow and Convective Heat Transfer in a Tube Bundle of a Pre-Heater
,”
Energy
,
76
, pp.
241
253
.10.1016/j.energy.2014.06.055
50.
Tao
,
W. Q.
,
He
,
Y. L.
,
Wang
,
Q. W.
,
Qu
,
Z. G.
, and
Song
,
F. Q.
,
2002
, “
A Unified Analysis on Enhancing Single Phase Convective Heat Transfer With Field Synergy Principle
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4871
4879
.10.1016/S0017-9310(02)00173-4
51.
Zhai
,
Y. L.
,
Xia
,
G. D.
,
Liu
,
X. F.
, and
Li
,
Y. F.
,
2014
, “
Heat Transfer in the Microchannels With Fan-Shaped Reentrant Cavities and Different Ribs Based on Field Synergy Principle and Entropy Generation Analysis
,”
Int. J. Heat Mass Transfer
,
68
, pp.
224
233
.10.1016/j.ijheatmasstransfer.2013.08.086
52.
Guo
,
J.
,
Xu
,
M.
, and
Cheng
,
L.
,
2009
, “
The Application of Field Synergy Number in Shell-and-Tube Heat Exchanger Optimization Design
,”
Appl. Energy
,
86
(
10
), pp.
2079
2087
.10.1016/j.apenergy.2009.01.013
You do not currently have access to this content.