Abstract

Pool boiling heat transfer offers high-performance cooling opportunities for thermal problems of electronics limited with high heat fluxes. Therefore, many researchers have been extensively studying over the last six decades. This paper presents a critical literature review of various parametric effects on pool boiling heat transfer and critical heat flux (CHF) such as pressure, subcooling, surface topography, surface orientation, working fluid, and combined effects. To achieve an optimal heat removal solution for a particular problem, each of these parameters must be understood. The governing mechanisms are discussed separately, and various options related to the selection of appropriate working fluids are highlighted. A broad summary of correlations developed until now for predicting CHF is presented with their ranges of validity. While proposed correlations for predicting CHF have been quite promising, they still have a considerable uncertainty (±25%). Finally, a correlation proposed by Professor Avram Bar-Cohen and his team (thermal management of electronics (TME) correlation) is compared with the experimental dataset published in previous studies. It shows that the uncertainty band can be further narrowed down to ±12.5% for dielectric liquids by using TME correlation. Furthermore, this correlation has been enhanced to predict CHF values underwater above 50 W/cm2 by applying a genetic algorithm, and new perspectives for possible future research activities are proposed.

References

1.
Jouhara
,
H.
,
Khordehgah
,
N.
,
Almahmoud
,
S.
,
Delpech
,
B.
,
Chauhan
,
A.
, and
Tassou
,
S. A.
,
2018
, “
Waste Heat Recovery Technologies and Applications
,”
Therm. Sci. Eng. Prog.
,
6
, pp.
268
289
.10.1016/j.tsep.2018.04.017
2.
Ebadian
,
M. A.
, and
Lin
,
C. X.
,
2011
, “
A Review of High-Heat-Flux Heat Removal Technologies
,”
ASME J. Heat Transfer-Trans. ASME
,
133
(
11
), p.
110801
.10.1115/1.4004340
3.
Cengel
,
Y.
, and
Heat
,
T. M.
,
2003
,
A Practical Approach
,
McGraw-Hill
,
New York
.
4.
Theofanous
,
T. G.
, and
Dinh
,
T.-N.
,
2006
, “
High Heat Flux Boiling and Burnout as Microphysical Phenomena: Mounting Evidence and Opportunities
,”
Multiphase Sci. Technol.
,
18
(
3
), pp.
251
276
.10.1615/MultScienTechn.v18.i3.30
5.
Cole
,
R.
,
1960
, “
A Photographic Study of Pool Boiling in the Region of the Critical Heat Flux
,”
AIChE J.
,
6
(
4
), pp.
533
538
.10.1002/aic.690060405
6.
Jung
,
J.
,
Kim
,
S. J.
, and
Kim
,
J.
,
2014
, “
Observations of the Critical Heat Flux Process During Pool Boiling of FC-72
,”
ASME J. Heat Transfer-Trans. ASME
,
136
(
4
), p.
041501
.10.1115/1.4025697
7.
Ivey
,
H. J.
, and
Thermodynamics and Fluid Mechanics Group
,
1963
, “
Acceleration and the Critical Heat Flux in Pool Boiling Heat Transfer
,”
Proc. Inst. Mech. Eng.
,
177
(
1
), pp.
15
42
.10.1243/PIME_PROC_1963_177_010_02
8.
Roshenow
,
W.
, and
Griffith
,
P.
,
1956
, “
Correlations of Maximum Heat Transfer Data for Boiling of Saturated Liquids
,”
Chem. Eng. Prog. Sump.
,
52
, Report No. 6.http://hdl.handle.net/1721.1/61480
9.
Vishnev
,
I.
,
1973
, “
Effect of Orienting the Hot Surface With Respect to the Gravitational Field on the Critical Nucleate Boiling of a Liquid
,”
J. Eng. Phys.
,
24
(
1
), pp.
43
48
.10.1007/BF00827332
10.
Zuber
,
N.
,
1961
, “
The Hydrodynamic Crisis in Pool Boiling of Saturated and Subcooled Liquids
,”
Int. Dev. Heat Transfer, ASME
,
27
, pp.
230
236
.https://ci.nii.ac.jp/naid/10010165734/
11.
Theofanous
,
T.
, and
Syri
,
S.
,
1997
, “
The Coolability Limits of a Reactor Pressure Vessel Lower Head
,”
Nucl. Eng. Des.
,
169
(
1–3
), pp.
59
76
.10.1016/S0029-5493(97)00024-1
12.
Haddad
,
K. H.
,
1996
,
An Experimental and Theoretical Study of Two-Phase Boundary Layer Flow on the Outside of Curved Downward-Facing Surfaces
,
The Pennsylvania State University
, Ann Arbor, MI.
13.
Chang
,
J.
, and
You
,
S.
,
1997
, “
Boiling Heat Transfer Phenomena From Microporous and Porous Surfaces in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
40
(
18
), pp.
4437
4447
.10.1016/S0017-9310(97)00055-0
14.
Kim
,
S. H.
,
Baek
,
W.-P.
, and
Chang
,
S. H.
,
2000
, “
Measurement of Critical Heat Flux for Narrow Annuli Submerged in Saturated Water
,”
Nucl. Eng. Des.
,
199
(
1–2
), pp.
41
48
.10.1016/S0029-5493(00)00250-8
15.
Dizon
,
M.
,
Yang
,
J.
,
Cheung
,
F.
,
Rempe
,
J.
,
Suh
,
K.
, and
Kim
,
S.-B.
,
2003
, “
Effects of Surface Coating on Nucleate Boiling Heat Transfer From a Downward Facing Surface
,”
Heat Transfer Summer Conference
, Vol.
36940
, Las Vegas, NV, July 21–23, pp.
403
411
.https://pennstate.pure.elsevier.com/en/publications/effects-of-surface-coating-on-nucleateboiling-heat-transfer-from
16.
Guan
,
C.-K.
,
Klausner
,
J. F.
, and
Mei
,
R.
,
2011
, “
A New Mechanistic Model for Pool Boiling Chf on Horizontal Surfaces
,”
Int. J. Heat Mass Transfer
,
54
(
17–18
), pp.
3960
3969
.10.1016/j.ijheatmasstransfer.2011.04.029
17.
Kaviany
,
M.
,
2012
,
Principles of Heat Transfer in Porous Media
,
Springer Science & Business Media
, Berlin.
18.
Kutateladze
,
S. S.
,
1951
, “
A Hydrodynamic Theory of Changes in a Boiling Process Under Free Convection
,”
Izv. Akad. Nauk Otd. Tekh. Nauk
,
4
, pp.
529
536
.
19.
Zuber
,
N.
,
1959
,
Hydrodynamic Aspects of Boiling Heat Transfer
,
United States Atomic Energy Commission, Technical Information Service
, Los Angeles, CA.
20.
Lienhard
,
J. H.
, and
Dhir
,
V. K.
,
1973
,
Extended Hydrodynamic Theory of the Peak and Minimum Pool Boiling Heat Fluxes
, Vol.
2270
,
National Aeronautics and Space Administration
, Washington, DC.
21.
Katto
,
Y.
, and
Kosho
,
Y.
,
1979
, “
Critical Heat Flux of Saturated Natural Convection Boiling in a Space Bounded by Two Horizontal co-Axial Disks and Heated From Below
,”
Int. J. Multiphase Flow
,
5
(
3
), pp.
219
224
.10.1016/0301-9322(79)90019-3
22.
Monde
,
M.
,
Kusuda
,
H.
, and
Uehara
,
H.
,
1982
, “
Critical Heat Flux During Natural Convective Boiling in Vertical Rectangular Channels Submerged in Saturated Liquid
,”
ASME J. Heat Transfer-Trans. ASME
,
104
(
2
), pp.
300
303
.10.1115/1.3245087
23.
El-Genk
,
M. S.
, and
Guo
,
Z.
,
1993
, “
Transient Boiling From Inclined and Downward-Facing Surfaces in a Saturated Pool
,”
Int. J. Refrig.
,
16
(
6
), pp.
414
422
.10.1016/0140-7007(93)90058-G
24.
Chang
,
J. Y.
, and
You
,
S. M.
,
1996
, “
Heater Orientation Effects on Pool Boiling of Micro-Porous-Enhanced Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer-Trans. ASME
,
118
(
4
), pp.
937
943
.10.1115/1.2822592
25.
Brusstar
,
M. J.
, and
Merte
,
H.
,
1997
, “
Effects of Heater Surface Orientation on the Critical Heat Flux–II. A Model for Pool and Forced Convection Subcooled Boiling
,”
Int. J. Heat Mass Transfer
,
40
(
17
), pp.
4021
4030
.10.1016/S0017-9310(97)00077-X
26.
Inoue
,
T.
,
Kawae
,
N.
, and
Monde
,
M.
,
1998
, “
Effect of Subcooling on Critical Heat Flux During Pool Boiling on a Horizontal Heated Wire
,”
Heat Mass Transfer
,
33
(
5–6
), pp.
481
488
.10.1007/s002310050219
27.
Kandlikar
,
S. G.
,
2001
, “
A Theoretical Model to Predict Pool Boiling CHF Incorporating Effects of Contact Angle and Orientation
,”
ASME J. Heat Transfer-Trans. ASME
,
123
(
6
), pp.
1071
1079
.10.1115/1.1409265
28.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2001
, “
Ebullient Cooling of Integrated Circuits by Novec Fluids
,”
Proceedings of Pacific Rim Intersociety, Electronics Packaging Conference
, Kauai, Hawaii, July 8–13, pp.
18
23
.https://www.researchgate.net/publication/286701270_Ebullient_cooling_of_integrated_circuits_by_NOVEC_fluids
29.
Liter
,
S. G.
, and
Kaviany
,
M.
,
2001
, “
Pool-Boiling Chf Enhancement by Modulated Porous-Layer Coating: Theory and Experiment
,”
Int. J. Heat Mass Transfer
,
44
(
22
), pp.
4287
4311
.10.1016/S0017-9310(01)00084-9
30.
El-Genk
,
M. S.
, and
Bostanci
,
H.
,
2003
, “
Saturation Boiling of HFE-7100 From a Copper Surface, Simulating a Microelectronic Chip
,”
Int. J. Heat Mass Transfer
,
46
(
10
), pp.
1841
1854
.10.1016/S0017-9310(02)00489-1
31.
Kim
,
Y. H.
, and
Suh
,
K. Y.
,
2003
, “
One-Dimensional Critical Heat Flux Concerning Surface Orientation and Gap Size Effects
,”
Nucl. Eng. Des.
,
226
(
3
), pp.
277
292
.10.1016/j.nucengdes.2003.07.003
32.
Priarone
,
A.
,
2005
, “
Effect of Surface Orientation on Nucleate Boiling and Critical Heat Flux of Dielectric Fluids
,”
Int. J. Therm. Sci.
,
44
(
9
), pp.
822
831
.10.1016/j.ijthermalsci.2005.02.014
33.
Liao
,
L.
,
Bao
,
R.
, and
Liu
,
Z.
,
2008
, “
Compositive Effects of Orientation and Contact Angle on Critical Heat Flux in Pool Boiling of Water
,”
Heat Mass Transfer
,
44
(
12
), pp.
1447
1453
.10.1007/s00231-008-0384-6
34.
Chu
,
K.-H.
,
Enright
,
R.
, and
Wang
,
E. N.
,
2012
, “
Structured Surfaces for Enhanced Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
100
(
24
), p.
241603
.10.1063/1.4724190
35.
Kim
,
J.
,
Jun
,
S.
,
Laksnarain
,
R.
, and
You
,
S. M.
,
2016
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer at a Heated Surface Having Moderate Wettability
,”
Int. J. Heat Mass Transfer
,
101
, pp.
992
1002
.10.1016/j.ijheatmasstransfer.2016.05.067
36.
Xie
,
S.
,
Jiang
,
M.
,
Kong
,
H.
,
Tong
,
Q.
, and
Zhao
,
J.
,
2021
, “
An Experimental Investigation on the Pool Boiling of Multi-Orientated Hierarchical Structured Surfaces
,”
Int. J. Heat Mass Transfer
,
164
, p.
120595
.10.1016/j.ijheatmasstransfer.2020.120595
37.
Kim
,
B. S.
,
Lee
,
H.
,
Shin
,
S.
,
Choi
,
G.
, and
Cho
,
H. H.
,
2014
, “
Interfacial Wicking Dynamics and Its Impact on Critical Heat Flux of Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
105
(
19
), p.
191601
.10.1063/1.4901569
38.
Danielson
,
R.
,
Tousignant
,
L.
, and
Bar-Cohen
,
A.
,
1987
, “
Saturated Pool Boiling Characteristics of Commercially Available Perfluorinated Inert Liquids
,”
pp. 419–430.
39.
Bar-Cohen
,
A.
,
Tong
,
W.
, and
Simon
,
T. W.
,
1992
, “
Theoretical Aspects of Nucleate Pool Boiling With Dielectric Liquids
,”
J. Therm. Sci.
,
1
(
1
), pp.
46
57
.10.1007/BF02650806
40.
You
,
S.
,
Simon
,
T.
,
Bar-Cohen
,
A.
, and
Hong
,
Y.
,
1995
, “
Effects of Dissolved Gas Content on Pool Boiling of a Highly Wetting Fluid
,”
ASME J. Heat Transfer-Trans. ASME
,
117
(
3
), pp.
687
692
.10.1115/1.2822631
41.
Watwe
,
A.
,
Bar-Cohen
,
A.
, and
McNeil
,
A.
,
1997
, “
Combined Pressure and Subcooling Effects on Pool Boiling From a PPGA Chip Package
,”
ASME J. Electron. Packag.
,
119
(
2
), pp.
95
105
.10.1115/1.2792226
42.
You
,
S.
,
Simon
,
T.
, and
Bar-Cohen
,
A.
,
1997
, “
Pool Boiling Heat Transfer With an Array of Flush-Mounted, Square Heaters on a Vertical Surface
,”
ASME J. Electron. Packag.
,
119
(
1
), pp.
17
25
.10.1115/1.2792195
43.
Arik
,
M.
,
2002
, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids
,” Ph.D. thesis,
University of Minnesota, Minneapolis, MN
.
44.
Geisler
,
K. J.
, and
Bar-Cohen
,
A.
,
2005
, “
Surface Effects on Confinement-Driven Pool Boiling Enhancement in Vertical Parallel-Plate Channels
,”
Heat Transfer Summer Conference
, San Francisco, CA, July 17–22, Vol.
47322
, pp.
195
205
.
45.
Arik
,
M.
,
Bar-Cohen
,
A.
, and
You
,
S. M.
,
2007
, “
Enhancement of Pool Boiling Critical Heat Flux in Dielectric Liquids by Microporous Coatings
,”
Int. J. Heat Mass Transfer
,
50
(
5–6
), pp.
997
1009
.10.1016/j.ijheatmasstransfer.2006.08.005
46.
Bar-Cohen
,
A.
,
Geisler
,
K.
, and
Rahim
,
E.
,
2008
, “
Pool and Flow Boiling in Narrow Gaps-Application to 3D Chip Stacks
,”
Proceedings of Fifth European Thermal-Sciences Conference
, Citeseer, The Netherlands, May.https://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.475.8504&rep=rep1&type=pdf
47.
Geisler
,
K. J.
, and
Bar-Cohen
,
A.
,
2008
, “
Optimization of Pool Boiling Heat Sinks Including the Effects of Confinement in the Interfin Spaces
,”
ASME J. Electron. Packag.
,
130
(
4
), p.
041002
.10.1115/1.2993135
48.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2010
, “
Pool Boiling of Perfluorocarbon Mixtures on Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
)., pp.
5596
5604
.10.1016/j.ijheatmasstransfer.2010.06.034
49.
Dahariya
,
S.
, and
Betz
,
A. R.
,
2019
, “
High Pressure Pool Boiling: Mechanisms for Heat Transfer Enhancement and Comparison to Existing Models
,”
Int. J. Heat Mass Transfer
,
141
, pp.
696
706
.10.1016/j.ijheatmasstransfer.2019.07.016
50.
Murallidharan
,
J.
,
Giustini
,
G.
,
Sato
,
Y.
,
Ničeno
,
B.
,
Badalassi
,
V.
, and
Walker
,
S. P.
,
2016
, “
Computational Fluid Dynamic Simulation of Single Bubble Growth Under High-Pressure Pool Boiling Conditions
,”
Nucl. Eng. Technol.
,
48
(
4
), pp.
859
869
.10.1016/j.net.2016.06.004
51.
Akiyama
,
M.
,
Tachibana
,
F.
, and
Ogawa
,
N.
,
1969
, “
Effect of Pressure on Bubble Growth in Pool Boiling
,”
Bull. JSME
,
12
(
53
), pp.
1121
1128
.10.1299/jsme1958.12.1121
52.
Labuntsov
,
D.
,
1964
, “
Study of the Growth of Bubbles During Boiling of Saturated Water Within a Wide Range of Pressures by Means of High-Speed Moving Pictures
,”
Teplofiz. Vys. Temp.
,
2
(
3
), pp.
446
453
.
53.
Du
,
J.
,
Zhao
,
C.
, and
Bo
,
H.
,
2018
, “
A Modified Model for Bubble Growth Rate and Bubble Departure Diameter in Nucleate Pool Boiling Covering a Wide Range of Pressures
,”
Appl. Therm. Eng.
,
145
, pp.
407
415
.10.1016/j.applthermaleng.2018.09.063
54.
Sakashita
,
H.
,
2011
, “
Bubble Growth Rates and Nucleation Site Densities in Saturated Pool Boiling of Water at High Pressures
,”
J. Nucl. Sci. Technol.
,
48
(
5
), pp.
734
743
.10.1080/18811248.2011.9711756
55.
Sakashita
,
H.
, and
Ono
,
A.
,
2009
, “
Boiling Behaviors and Critical Heat Flux on a Horizontal Plate in Saturated Pool Boiling of Water at High Pressures
,”
Int. J. Heat Mass Transfer
,
52
(
3–4
), pp.
744
750
.10.1016/j.ijheatmasstransfer.2008.06.040
56.
Walunj
,
A.
, and
Sathyabhama
,
A.
,
2019
, “
Bubble Dynamics and Enhanced Heat Transfer During High-Pressure Pool Boiling on Rough Surface
,”
J. Thermophys. Heat Transfer
,
33
(
2
), pp.
309
321
.10.2514/1.T5495
57.
Miglani
,
A.
,
Joo
,
D.
,
Basu
,
S.
, and
Kumar
,
R.
,
2013
, “
Nucleation Dynamics and Pool Boiling Characteristics of High Pressure Refrigerant Using Thermochromic Liquid Crystals
,”
Int. J. Heat Mass Transfer
,
60
, pp.
188
200
.10.1016/j.ijheatmasstransfer.2012.12.054
58.
Trisaksri
,
V.
, and
Wongwises
,
S.
,
2009
, “
Nucleate Pool Boiling Heat Transfer of Tio2–R141B Nanofluids
,”
Int. J. Heat Mass Transfer
,
52
(
5–6
), pp.
1582
1588
.10.1016/j.ijheatmasstransfer.2008.07.041
59.
Giraud
,
F.
,
Rullière
,
R.
,
Toublanc
,
C.
,
Clausse
,
M.
, and
Bonjour
,
J.
,
2016
, “
Subatmospheric Pressure Boiling on a Single Nucleation Site in Narrow Vertical Spaces
,”
Int. J. Heat Fluid Flow
,
58
, pp.
1
10
.10.1016/j.ijheatfluidflow.2015.12.002
60.
Surtaev
,
A.
,
Serdyukov
,
V.
, and
Malakhov
,
I.
,
2020
, “
Effect of Subatmospheric Pressures on Heat Transfer, Vapor Bubbles and Dry Spots Evolution During Water Boiling
,”
Exp. Therm. Fluid Sci.
,
112
, p.
109974
.10.1016/j.expthermflusci.2019.109974
61.
Michaie
,
S.
,
Rullière
,
R.
, and
Bonjour
,
J.
,
2019
, “
Towards a More Generalized Understanding of Pool Boiling at Low Pressure: Bubble Dynamics for Two Fluids in States of Thermodynamic Similarity
,”
Exp. Therm. Fluid Sci.
,
101
, pp.
217
230
.10.1016/j.expthermflusci.2018.10.009
62.
Pal
,
A.
, and
Joshi
,
Y.
,
2006
, “
Boiling at Sub-Atmospheric Conditions With Enhanced Structures
,”
Thermal and Thermomechanical Proceedings 10th Intersociety Conference on Phenomena in Electronics Systems
, San Diego, CA, May 30–June 2, p.
10
.10.1109/ITHERM.2006.1645403
63.
Chen
,
H.
,
Chen
,
G.
,
Zou
,
X.
,
Yao
,
Y.
, and
Gong
,
M.
,
2017
, “
Experimental Investigations on Bubble Departure Diameter and Frequency of Methane Saturated Nucleate Pool Boiling at Four Different Pressures
,”
Int. J. Heat Mass Transfer
,
112
, pp.
662
675
.10.1016/j.ijheatmasstransfer.2017.05.031
64.
Rainey
,
K.
,
You
,
S.
, and
Lee
,
S.
,
2003
, “
Effect of Pressure, Subcooling, and Dissolved Gas on Pool Boiling Heat Transfer From Microporous Surfaces in FC-72
,”
ASME J. Heat Transfer-Trans. ASME
,
125
(
1
), pp.
75
83
.10.1115/1.1527890
65.
Serdyukov
,
V.
,
Malakhov
,
I.
, and
Surtaev
,
A.
,
2019
, “
Features of Vapor Bubbles Evolution at Liquid Boiling at Subatmospheric Pressures
,”
Thermophys. Aeromech.
,
26
(
4
), pp.
623
626
.10.1134/S0869864319040140
66.
Halon
,
T.
,
Zajaczkowski
,
B.
,
Michaie
,
S.
,
Rulliere
,
R.
, and
Bonjour
,
J.
,
2018
, “
Enhanced Tunneled Surfaces for Water Pool Boiling Heat Transfer Under Low Pressure
,”
Int. J. Heat Mass Transfer
,
116
, pp.
93
103
.10.1016/j.ijheatmasstransfer.2017.09.025
67.
Ren
,
S.
, and
Zhou
,
W.
,
2020
, “
Numerical Investigation of Nucleate Pool Boiling Outside a Vertical Tube Under Sub-Atmospheric Pressures
,”
Int. Commun. Heat Mass Transfer
,
116
, p.
104662
.10.1016/j.icheatmasstransfer.2020.104662
68.
Zimmermann
,
M.
,
Heinz
,
M.
,
Sielaff
,
A.
,
Gambaryan-Roisman
,
T.
, and
Stephan
,
P.
,
2020
, “
Influence of System Pressure on Pool Boiling Regimes on a Microstructured Surface Compared to a Smooth Surface
,”
Exp. Heat Transfer
,
33
(
4
), pp.
318
334
.10.1080/08916152.2019.1635228
69.
Peyghambarzadeh
,
S.
,
Jamialahmadi
,
M.
,
Alavi Fazel
,
S.
, and
Azizi
,
S.
,
2009
, “
Experimental and Theoretical Study of Pool Boiling Heat Transfer to Amine Solutions
,”
Braz. J. Chem. Eng.
,
26
(
1
), pp.
33
43
.10.1590/S0104-66322009000100004
70.
Stephan
,
K.
, and
Körner
,
M.
,
1969
, “
Calculation of Heat Transfer in Evaporating Binary Liquid Mixtures
,”
Chem. Ing. Tech.
,
41
(
7
), pp.
409
417
.10.1002/cite.330410702
71.
Forrest
,
E. C.
,
Hu
,
L.-W.
,
McKrell
,
T. J.
,
Buongiorno
,
J.
, and
Ostrovsky
,
Y.
,
2010
, “
Pressure Effects on the Pool Boiling of the Fluorinated Ketone c 2 f 5 c (o) cf (cf 3) 2
,”
12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, Las Vegas, NV, June 2–5
, pp.
1
9
.10.1109/ITHERM.2010.5501414
72.
Feldmann
,
H.
, and
Luke
,
A.
,
2008
, “
Nucleate Boiling in Water for Different Pressures
,”
International Refrigeration and Air Conditioning Conference at Purdue
, West Lafayette, IN, Paper No. 982.https://docs.lib.purdue.edu/cgi/viewcontent.cgi?referer=&httpsredir=1&article=1981&hx0026;context=iracc
73.
Li
,
Y.
,
Fukuda
,
K.
, and
Liu
,
Q.
,
2017
, “
Steady and Transient CHF in Subcooled Pool Boiling of Water Under Sub-Atmospheric Pressures
,”
Mar. Eng.
,
52
(
2
), pp.
245
250
.10.5988/jime.52.245
74.
Bhaumik
,
S.
,
Agarwal
,
V.
, and
Gupta
,
S.
,
2004
, “
A Generalized Correlation of Nucleate Pool Boiling of Liquids
,”
Ind. J. Chem. Technol.
,
11
, pp.
719
725
.http://nopr.niscair.res.in/handle/123456789/9522
75.
Kind
,
M.
,
Martin
,
H.
,
Stephan
,
P.
,
Roetzel
,
W.
,
Spang
,
B.
, and
Müller-Steinhagen
,
H.
,
2010
, “
VDI Heat Atlas
,” Springer, Berlin.
76.
Gorenflo
,
D.
,
Baumhögger
,
E.
,
Windmann
,
T.
, and
Herres
,
G.
,
2010
, “
Nucleate Pool Boiling, Film Boiling and Single-Phase Free Convection at Pressures Up to the Critical State. Part I: Integral Heat Transfer for Horizontal Copper Cylinders
,”
Int. J. Refrig.
,
33
(
7
), pp.
1229
1250
.10.1016/j.ijrefrig.2010.07.015
77.
Yaghoubi
,
M.
,
Hirbodi
,
K.
,
Nematollahi
,
M.
, and
Bashiri
,
S.
,
2017
, “
Experimental Study of Subcooled Pool Boiling Around a Circular Rough Cylinder
,”
AUT J. Mech. Eng.
,
1
(
1
), pp.
21
28
.10.22060/MEJ.2016.793
78.
Pattanayak
,
B.
, and
Kothadia
,
H.
,
2021
, “
Experimental Study of Critical Heat Flux During Pool Boiling on Mini Tubes: Effect of Subcooling, Orientation, and Dimensions
,”
Heat Transfer Eng.
, 42, pp.
1
27
.10.1080/01457632.2021.1919971
79.
Xie
,
S.
,
Tong
,
Q.
,
Guo
,
Y.
,
Li
,
X.
,
Kong
,
H.
, and
Zhao
,
J.
,
2020
, “
The Effects of Surface Orientation, Heater Size, Wettability, and Subcooling on the Critical Heat Flux Enhancement in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
149
, p.
119230
.10.1016/j.ijheatmasstransfer.2019.119230
80.
Jun
,
S.
,
Kim
,
J.
,
You
,
S. M.
, and
Kim
,
H. Y.
,
2018
, “
Effect of Subcooling on Pool Boiling of Water From Sintered Copper Microporous Coating at Different Orientations
,”
Sci. Technol. Nucl. Install.
,
2018
, pp.
1
9
.10.1155/2018/8623985
81.
Zhang
,
S.
,
Tang
,
Y.
,
Zeng
,
J.
,
Yuan
,
W.
,
Chen
,
J.
, and
Chen
,
C.
,
2016
, “
Pool Boiling Heat Transfer Enhancement by Porous Interconnected Microchannel Nets at Different Liquid Subcooling
,”
Appl. Therm. Eng.
,
93
, pp.
1135
1144
.10.1016/j.applthermaleng.2015.10.044
82.
Henry
,
C. D.
, and
Kim
,
J.
,
2004
, “
A Study of the Effects of Heater Size, Subcooling, and Gravity Level on Pool Boiling Heat Transfer
,”
Int. J. Heat Fluid Flow
,
25
(
2
), pp.
262
273
.10.1016/j.ijheatfluidflow.2003.11.019
83.
El-Genk
,
M.
,
2003
, “
Combined Effects of Subcooling and Surface Orientation on Pool Boiling of HFE-7100 From a Simulated Electronic Chip
,”
Exp. Heat Transfer
,
16
(
4
), pp.
281
301
.10.1080/08916150390242244
84.
Mudawar
,
I.
, and
Anderson
,
T.
,
1990
, “
Parametric Investigation Into the Effects of Pressure, Subcooling, Surface Augmentation and Choice of Coolant on Pool Boiling in the Design of Cooling Systems for High-Power-Density Electronic Chips
,”
ASME J. Electron. Packag.
, 112(4), pp.
375
382
.10.1115/1.2904392
85.
Kim
,
Y.-H.
,
Lee
,
K.-J.
, and
Han
,
D.
,
2008
, “
Pool Boiling Enhancement With Surface Treatments
,”
Heat Mass Transfer
,
45
(
1
), pp.
55
60
.10.1007/s00231-008-0402-8
86.
Mao
,
L.
,
Zhou
,
W.
,
Hu
,
X.
,
He
,
Y.
,
Zhang
,
G.
,
Zhang
,
L.
, and
Fu
,
R.
,
2020
, “
Pool Boiling Performance and Bubble Dynamics on Graphene Oxide Nanocoating Surface
,”
Int. J. Therm. Sci.
,
147
, p.
106154
.10.1016/j.ijthermalsci.2019.106154
87.
Su
,
G.-Y.
,
Bucci
,
M.
,
McKrell
,
T.
, and
Buongiorno
,
J.
,
2016
, “
Transient Boiling of Water Under Exponentially Escalating Heat Inputs. Part I: Pool Boiling
,”
Int. J. Heat Mass Transfer
,
96
, pp.
667
684
.10.1016/j.ijheatmasstransfer.2016.01.032
88.
Ayoobi
,
A.
,
Faghih Khorasani
,
A.
, and
Tavakoli
,
M. R.
,
2020
, “
The Effects of Subcooled Temperatures on Transient Pool Boiling of Deionized Water Under Atmospheric Pressure
,”
AUT J. Mech. Eng.
,
4
(
1
), pp.
67
78
.10.22060/AJME.2019.15227.5767
89.
Sathyamurthi
,
V.
,
Ahn
,
H.
,
Banerjee
,
D.
, and
Lau
,
S.
,
2009
, “
Subcooled Pool Boiling Experiments on Horizontal Heaters Coated With Carbon Nanotubes
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
7
), p.
071501
.10.1115/1.3000595
90.
Osborn
,
O. B.
,
1986
, “
A Pool Boiling Map: Water on a Horizontal Surface at Atmospheric Pressure
,” Master's thesis,
University of Central Florida
, Orlando, FL.
91.
Dong
,
L.
,
Quan
,
X.
, and
Cheng
,
P.
,
2014
, “
An Experimental Investigation of Enhanced Pool Boiling Heat Transfer From Surfaces With Micro/Nano-Structures
,”
Int. J. Heat Mass Transfer
,
71
, pp.
189
196
.10.1016/j.ijheatmasstransfer.2013.11.068
92.
Ono
,
A.
, and
Sakashita
,
H.
,
2007
, “
Liquid–Vapor Structure Near Heating Surface at High Heat Flux in Subcooled Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3481
3489
.10.1016/j.ijheatmasstransfer.2007.01.026
93.
Borjini
,
M. N.
,
Aissia
,
H. B.
,
Halouani
,
K.
, and
Zeghmati
,
B.
,
2008
, “
Effect of Radiative Heat Transfer on the Three-Dimensional Boyancy Flow in Cubic Enclosure Heated From the Side
,”
Int. J. Heat Fluid Flow
,
29
(
1
), pp.
107
118
.10.1016/j.ijheatfluidflow.2007.07.012
94.
Darabi
,
J.
,
Ohadi
,
M.
,
Fanni
,
M.
,
Dessiatoun
,
S.
, and
Kedzierski
,
M. A.
,
1999
, “
Effect of Heating Boundary Conditions on Pool Boiling Experiments
,”
HvacR Res.
,
5
(
4
), pp.
283
296
.10.1080/10789669.1999.10391239
95.
Raj
,
R.
, and
Kim
,
J.
,
2009
, “
Heater Size Effect on Subcooled Pool Boiling of FC-72
,”
ECI International Conference on Boiling Heat Transfer
, Florianópolis-SC-Brazil, May
3
7
.https://inis.iaea.org/collection/NCLCollectionStore/_Public/40/079/40079219.pdf
96.
Rainey
,
K.
, and
You
,
S.
,
2001
, “
Effects of Heater Size and Orientation on Pool Boiling Heat Transfer From Microporous Coated Surfaces
,”
Int. J. Heat Mass Transfer
,
44
(
14
), pp.
2589
2599
.10.1016/S0017-9310(00)00318-5
97.
Yang
,
S. H.
,
Baek
,
W.-P.
, and
Chang
,
S. H.
,
1997
, “
Pool-Boiling Critical Heat Flux of Water on Small Plates: Effects of Surface Orientation and Size
,”
Int. Commun. Heat Mass Transfer
,
24
(
8
), pp.
1093
1102
.10.1016/S0735-1933(97)00103-6
98.
Henry
,
C. D.
,
Kim
,
J.
,
Chamberlain
,
B.
, and
Hartman
,
T. G.
,
2005
, “
Heater Size and Heater Aspect Ratio Effects on Subcooled Pool Boiling Heat Transfer in Low-g
,”
Exp. Therm. Fluid Sci.
,
29
(
7
), pp.
773
782
.10.1016/j.expthermflusci.2005.03.003
99.
Kim
,
J.
,
You
,
S.
, and
Pak
,
J.
,
2006
, “
Effects of Heater Size and Working Fluids on Nucleate Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
49
(
1–2
), pp.
122
131
.10.1016/j.ijheatmasstransfer.2005.08.001
100.
Kwark
,
S. M.
,
Amaya
,
M.
,
Kumar
,
R.
,
Moreno
,
G.
, and
You
,
S. M.
,
2010
, “
Effects of Pressure, Orientation, and Heater Size on Pool Boiling of Water With Nanocoated Heaters
,”
Int. J. Heat Mass Transfer
,
53
(
23–24
), pp.
5199
5208
.10.1016/j.ijheatmasstransfer.2010.07.040
101.
Li
,
W.
,
Dai
,
R.
,
Zeng
,
M.
, and
Wang
,
Q.
,
2020
, “
Review of Two Types of Surface Modification on Pool Boiling Enhancement: Passive and Active
,”
Renewable Sustainable Energy Rev.
,
130
, p.
109926
.10.1016/j.rser.2020.109926
102.
McGillis
,
W. R.
,
Carey
,
V. P.
,
Fitch
,
J. S.
, and
Hamburgen
,
W. R.
,
1991
, “
Pool Boiling Enhancement Techniques for Water at Low Pressure
,”
Proceedings of Seventh IEEE Semiconductor Thermal Measurement and Management Symposium
, Phoenix, AZ, Feb. 12–14, pp.
64
72
.10.1109/STHERM.1991.152914
103.
He
,
M.
, and
Lee
,
Y.
,
2019
, “
Revisiting Heater Size Sensitive Pool Boiling Critical Heat Flux Using Neural Network Modeling: Heater Length of the Half of the Rayleigh-Taylor Instability Wavelength Maximizes CHF
,”
Therm. Sci. Eng. Prog.
,
14
, p.
100421
.10.1016/j.tsep.2019.100421
104.
Liang
,
G.
, and
Mudawar
,
I.
,
2019
, “
Review of Pool Boiling Enhancement by Surface Modification
,”
Int. J. Heat Mass Transfer
,
128
, pp.
892
933
.10.1016/j.ijheatmasstransfer.2018.09.026
105.
Jones
,
B. J.
,
McHale
,
J. P.
, and
Garimella
,
S. V.
,
2009
, “
The Influence of Surface Roughness on Nucleate Pool Boiling Heat Transfer
,”
ASME J. Heat Transfer-Trans. ASME
,
131
(
12
), p.
121009
.10.1115/1.3220144
106.
Phan
,
H. T.
,
Caney
,
N.
,
Marty
,
P.
,
Colasson
,
S.
, and
Gavillet
,
J.
,
2009
, “
A New Approach to Understanding the Effects of Surface Wettability on Nucleate Boiling
,”
Méc. Ind.
,
10
(
3–4
), pp.
223
230
.10.1051/meca/2009051
107.
Kim
,
J.
,
Jun
,
S.
,
Lee
,
J.
,
Godinez
,
J.
, and
You
,
S. M.
,
2017
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer of Water on a Superhydrophilic Aluminum Surface
,”
ASME J. Heat Transfer-Trans. ASME
,
139
(
10
), p.
101501
.10.1115/1.4036599
108.
Kang
,
M.-G.
,
2000
, “
Effect of Surface Roughness on Pool Boiling Heat Transfer
,”
Int. J. Heat Mass Transfer
,
43
(
22
), pp.
4073
4085
.10.1016/S0017-9310(00)00043-0
109.
Ahmad
,
D.
,
van den Boogaert
,
I.
,
Miller
,
J.
,
Presswell
,
R.
, and
Jouhara
,
H.
,
2018
, “
Hydrophilic and Hydrophobic Materials and Their Applications
,”
Energy Sources, Part A Recov. Util. Environ. Eff.
,
40
(
22
), pp.
2686
2725
.10.1080/15567036.2018.1511642
110.
Zupančič
,
M.
,
Steinbücher
,
M.
,
Gregorčič
,
P.
, and
Golobič
,
I.
,
2015
, “
Enhanced Pool-Boiling Heat Transfer on Laser-Made Hydrophobic/Superhydrophilic Polydimethylsiloxane-Silica Patterned Surfaces
,”
Appl. Therm. Eng.
,
91
, pp.
288
297
.10.1016/j.applthermaleng.2015.08.026
111.
Maruoka
,
N.
,
Mori
,
S.
, and
Okuyama
,
K.
,
2016
, “
The Effect of Liquid Supply Due to Capillary Action on a Critical Heat Flux Enhancement Using a Honeycomb Porous Plate in a Saturated Pool Boiling
,”
Nippon Kikai Gakkai Ronbunshu (Online)
,
82
(
840
), p.
1600106
.10.1299/transjsme.16-00106
112.
Son
,
H. H.
,
Seo
,
G. H.
,
Jeong
,
U.
,
Shin
,
D. Y.
, and
Kim
,
S. J.
,
2017
, “
Capillary Wicking Effect of a CR-Sputtered Superhydrophilic Surface on Enhancement of Pool Boiling Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
113
, pp.
115
128
.10.1016/j.ijheatmasstransfer.2017.05.055
113.
Yu
,
C. K.
, and
Lu
,
D. C.
,
2007
, “
Pool Boiling Heat Transfer on Horizontal Rectangular Fin Array in Saturated FC-72
,”
Int. J. Heat Mass Transfer
,
50
(
17–18
), pp.
3624
3637
.10.1016/j.ijheatmasstransfer.2007.02.003
114.
Hożejowska
,
S.
,
Kaniowski
,
R.
, and
Pastuszko
,
R.
,
2022
, “
Application of the Trefftz Method for Pool Boiling Heat Transfer on Open Microchannel Surfaces
,”
Heat Transfer Eng.
,
43
(
3–5
), p.
362
.10.1080/01457632.2021.1874669
115.
Kaniowski
,
R.
, and
Pastuszko
,
R.
,
2021
, “
Pool Boiling of Water on Surfaces With Open Microchannels
,”
Energies
,
14
(
11
), p.
3062
.10.3390/en14113062
116.
Kim
,
S. H.
,
Lee
,
G. C.
,
Kang
,
J. Y.
,
Moriyama
,
K.
,
Kim
,
M. H.
, and
Park
,
H. S.
,
2015
, “
Boiling Heat Transfer and Critical Heat Flux Evaluation of the Pool Boiling on Micro Structured Surface
,”
Int. J. Heat Mass Transfer
,
91
, pp.
1140
1147
.10.1016/j.ijheatmasstransfer.2015.07.120
117.
Moura
,
M.
,
Teodori
,
E.
,
Moita
,
A. S.
, and
Moreira
,
A. L.
,
2016
, “
2 Phase Microprocessor Cooling System With Controlled Pool Boiling of Dielectrics Over Micro-and-Nano Structured Integrated Heat Spreaders
,” 15th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas NV, May 31–June 3
, pp.
378
387
.10.1109/ITHERM.2016.7517574
118.
Dong
,
L.
,
Quan
,
X.
, and
Cheng
,
P.
,
2012
, “
An Analysis of Surface-Microstructures Effects on Heterogeneous Nucleation in Pool Boiling
,”
Int. J. Heat Mass Transfer
,
55
(
15–16
), pp.
4376
4384
.10.1016/j.ijheatmasstransfer.2012.04.006
119.
Ho
,
J.
,
Wong
,
K.
, and
Leong
,
K.
,
2016
, “
Saturated Pool Boiling of FC-72 From Enhanced Surfaces Produced by Selective Laser Melting
,”
Int. J. Heat Mass Transfer
,
99
, pp.
107
121
.10.1016/j.ijheatmasstransfer.2016.03.073
120.
Hossain
,
M. R.
,
Talukder
,
M. I. H.
, and
Rahman
,
M. A.
,
2019
, “
Study of Pool Boiling on Flat and Micro-Grooved Brass and Copper Surfaces
,”
Eighth BSME International Conference on Thermal Engineering
,
AIP Publishing
, Dhaka, Bangladesh, Dec.
19
21
.10.1063/1.5115857
121.
Zhou
,
W.
,
Luan
,
Y.
,
Dai
,
X.
, and
Hu
,
X.
,
2019
, “
Study on Microbubble Dynamic Behaviors at Vertical Micro-Nano Hybrid Surfaces Based on Open Capillary Microgrooves Heat Sink
,”
Int. J. Therm. Sci.
,
135
, pp.
434
444
.10.1016/j.ijthermalsci.2018.06.022
122.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2012
, “
Effect of Open Microchannel Geometry on Pool Boiling Enhancement
,”
Int. J. Heat Mass Transfer
,
55
(
4
), pp.
1004
1013
.10.1016/j.ijheatmasstransfer.2011.10.010
123.
Ha
,
M.
, and
Graham
,
S.
,
2019
, “
Pool Boiling Enhancement Using Vapor Channels in Microporous Surfaces
,”
Int. J. Heat Mass Transfer
,
143
, p.
118532
.10.1016/j.ijheatmasstransfer.2019.118532
124.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2016
, “
Ultra-High Pool Boiling Performance and Effect of Channel Width With Selectively Coated Open Microchannels
,”
Int. J. Heat Mass Transfer
,
95
, pp.
795
805
.10.1016/j.ijheatmasstransfer.2015.12.061
125.
Patil
,
C. M.
, and
Kandlikar
,
S. G.
,
2014
, “
Pool Boiling Enhancement Through Microporous Coatings Selectively Electrodeposited on Fin Tops of Open Microchannels
,”
Int. J. Heat Mass Transfer
,
79
, pp.
816
828
.10.1016/j.ijheatmasstransfer.2014.08.063
126.
Sun
,
Y.
,
Chen
,
G.
,
Zhang
,
S.
,
Tang
,
Y.
,
Zeng
,
J.
, and
Yuan
,
W.
,
2017
, “
Pool Boiling Performance and Bubble Dynamics on Microgrooved Surfaces With Reentrant Cavities
,”
Appl. Therm. Eng.
,
125
, pp.
432
442
.10.1016/j.applthermaleng.2017.07.044
127.
Ramaswamy
,
C.
,
Joshi
,
Y.
,
Nakayama
,
W.
, and
Johnson
,
W.
,
2002
, “
High-Speed Visualization of Boiling From an Enhanced Structure
,”
Int. J. Heat Mass Transfer
,
45
(
24
), pp.
4761
4771
.10.1016/S0017-9310(02)00196-5
128.
Cooke
,
D.
, and
Kandlikar
,
S. G.
,
2010
, “
Pool Boiling Heat Transfer and Bubble Dynamics Over Plain and Enhanced Microchannels
,”
ASME J. Heat Transfer-Trans. ASME
, 133(5), p. 052902.10.1115/1.4003046
129.
Pinto
,
A. M.
,
Oliveira
,
V. B.
, and
Falcão
,
D. S.
,
2018
, “
Miniaturization of Direct Alcohol Fuel Cells: Microfabrication Techniques and Microfluidic Architectures
,”
Direct Alcohol Fuel Cells for Portable Applications
,
Elsevier
, Amsterdam, The Netherlands, pp.
245
264
.
130.
Mori
,
S.
, and
Utaka
,
Y.
,
2017
, “
Critical Heat Flux Enhancement by Surface Modification in a Saturated Pool Boiling: A Review
,”
Int. J. Heat Mass Transfer
,
108
, pp.
2534
2557
.10.1016/j.ijheatmasstransfer.2017.01.090
131.
Dewangan
,
A. K.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2019
, “
Nucleate Pool Boiling Heat Transfer of Refrigerants Using Coated Surfaces
,”
Adv. Cooling Technol. Appl.
, p.
85
.10.5772/intechopen.81864
132.
Zhong
,
D.
,
Meng
,
J.
,
Li
,
Z.
, and
Guo
,
Z.
,
2015
, “
Experimental Study of Saturated Pool Boiling From Downward Facing Surfaces With Artificial Cavities
,”
Exp. Therm. Fluid Sci.
,
68
, pp.
442
451
.10.1016/j.expthermflusci.2015.06.003
133.
Jung
,
J.-Y.
, and
Kwak
,
H.-Y.
,
2006
, “
Effect of Surface Condition on Boiling Heat Transfer From Silicon Chip With Submicron-Scale Roughness
,”
Int. J. Heat Mass Transfer
,
49
(
23–24
), pp.
4543
4551
.10.1016/j.ijheatmasstransfer.2006.03.045
134.
Addy
,
J.
,
Olbricht
,
M.
,
Müller
,
B.
, and
Luke
,
A.
,
2016
, “
Pool Boiling Heat Transfer on Structured Surfaces
,”
J. Phys. Conf. Ser.
,
745
, p.
032077
.10.1088/1742-6596/745/3/032077
135.
Arenales
,
M. R. M.
,
C.S
,
S. K.
,
Kuo
,
L.-S.
, and
Chen
,
P.-H.
,
2020
, “
Surface Roughness Variation Effects on Copper Tubes in Pool Boiling of Water
,”
Int. J. Heat Mass Transfer
,
151
, p.
119399
.10.1016/j.ijheatmasstransfer.2020.119399
136.
Ferjančič
,
K.
,
Može
,
M.
,
Križan
,
P.
,
Bobič
,
M.
, and
Golobič
,
I.
,
2020
, “
Subcooled Critical Heat Flux on Laser-Textured Stainless-Steel Ribbon Heaters in Pool Boiling of FC-72
,”
Int. J. Heat Mass Transfer
,
159
, p.
120090
.10.1016/j.ijheatmasstransfer.2020.120090
137.
Mani
,
D.
,
Sivan
,
S.
,
Ali
,
H. M.
, and
Ganesan
,
U. K.
,
2020
, “
Investigation to Improve the Pool Boiling Heat Transfer Characteristics Using Laser-Textured Copper-Grooved Surfaces
,”
Int. J. Photoenergy
,
2020
, pp.
1
8
.10.1155/2020/3846157
138.
Zakšek
,
P.
,
Zupančič
,
M.
,
Gregorčič
,
P.
, and
Golobič
,
I.
,
2020
, “
Investigation of Nucleate Pool Boiling of Saturated Pure Liquids and Ethanol-Water Mixtures on Smooth and Laser-Textured Surfaces
,”
Nanoscale Microscale Thermophys. Eng.
,
24
(
1
), pp.
29
42
.10.1080/15567265.2019.1689590
139.
Ha
,
M.
, and
Graham
,
S.
,
2017
, “
Pool Boiling Characteristics and Critical Heat Flux Mechanisms of Microporous Surfaces and Enhancement Through Structural Modification
,”
Appl. Phys. Lett.
,
111
(
9
), p.
091601
.10.1063/1.4999158
140.
Thiagarajan
,
S. J.
,
Yang
,
R.
,
King
,
C.
, and
Narumanchi
,
S.
,
2015
, “
Bubble Dynamics and Nucleate Pool Boiling Heat Transfer on Microporous Copper Surfaces
,”
Int. J. Heat Mass Transfer
,
89
, pp.
1297
1315
.10.1016/j.ijheatmasstransfer.2015.06.013
141.
Righetti
,
G.
,
Doretti
,
L.
,
Sadafi
,
H.
,
Hooman
,
K.
, and
Mancin
,
S.
,
2020
, “
Water Pool Boiling Across Low Pore Density Aluminum Foams
,”
Heat Transfer Eng.
,
41
(
19–20
), pp.
1673
1682
.10.1080/01457632.2019.1640464
142.
Jun
,
S.
,
Kim
,
J.
,
Son
,
D.
,
Kim
,
H. Y.
, and
You
,
S. M.
,
2016
, “
Enhancement of Pool Boiling Heat Transfer in Water Using Sintered Copper Microporous Coatings
,”
Nucl. Eng. Technol.
,
48
(
4
), pp.
932
940
.10.1016/j.net.2016.02.018
143.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2005
, “
Enhanced Boiling of HFE-7100 Dielectric Liquid on Porous Graphite
,”
Energy Convers. Manage.
,
46
(
15–16
), pp.
2455
2481
.10.1016/j.enconman.2004.11.012
144.
Volodin
,
O.
,
Pecherkin
,
N.
,
Pavlenko
,
A.
, and
Zubkov
,
N.
,
2020
, “
Surface Microstructures for Boiling and Evaporation Enhancement in Falling Films of Low-Viscosity Fluids
,”
Int. J. Heat Mass Transfer
,
155
, p.
119722
.10.1016/j.ijheatmasstransfer.2020.119722
145.
Suroto
,
B. J.
,
Tashiro
,
M.
,
Hirabayashi
,
S.
,
Hidaka
,
S.
,
Kohno
,
M.
, and
Takata
,
Y.
,
2013
, “
Effects of Hydrophobic-Spot Periphery and Subcooling on Nucleate Pool Boiling From a Mixed-Wettability Surface
,”
J. Therm. Sci. Technol.
,
8
(
1
), pp.
294
308
.10.1299/jtst.8.294
146.
Wu
,
W.
,
Bostanci
,
H.
,
Chow
,
L.
,
Hong
,
Y.
,
Su
,
M.
, and
Kizito
,
J. P.
,
2010
, “
Nucleate Boiling Heat Transfer Enhancement for Water and FC-72 on Titanium Oxide and Silicon Oxide Surfaces
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1773
1777
.10.1016/j.ijheatmasstransfer.2010.01.013
147.
Chang
,
X.
,
Jin
,
Z.
,
Sun
,
Y.
,
Wang
,
Y.
,
Yang
,
Z.
, and
Ding
,
G.
,
2018
, “
An All-Metal Hollow Microstructure for Pool-Boiling Chip-Integrated Cooling Based on Electroplating
,” IEEE 13th Annual International Conference on Nano/Micro Engineered and Molecular Systems (
NEMS
), Singapore, Apr. 22–26
.10.1109/NEMS.2018.8556939
148.
Shahmardi
,
A.
,
Tammisola
,
O.
,
Chinappi
,
M.
, and
Brandt
,
L.
,
2021
, “
Effects of Surface Nanostructure and Wettability on Pool Boiling: A Molecular Dynamics Study
,”
Int. J. Therm. Sci.
, 167, p. 106980.10.1016/j.ijthermalsci.2021.106980
149.
Ignácio
,
I.
,
Cardoso
,
E. M.
,
Gasche
,
J. L.
, and
Ribatski
,
G.
,
2015
, “
A State-of-the-Art Review on Pool Boiling on Nanostructure Surfaces
,”
ASME
Paper No. ICNMM2015-48120.10.1115/ICNMM2015-48120
150.
Cao
,
Z.
,
Wu
,
Z.
,
Abbood
,
S.
, and
Sundén
,
B.
,
2019
, “
An Analysis of Pool Boiling Heat Transfer on Nanoparticle-Coated Surfaces
,”
Energy Procedia
,
158
, pp.
5880
5887
.10.1016/j.egypro.2019.01.537
151.
Stephen
,
M. T.
,
Manetti
,
L. L.
,
Kiyomura
,
I. S.
, and
Cardoso
,
E. M.
,
2017
, “
Influence of Heating Mode on the Nanoparticle Deposition and on the Boiling Heat Transfer Using Nanocoated Surfaces
,”
4th Multiphase Flow Journeys - JEM2017
, Sao Paulo, Brazil.https://www.researchgate.net/publication/315755501_INFLUENCE_OF_HEATING_MODE_ON_THE_NANOPARTICLE_DEPOSITION_AND_ON_TH
152.
Hendricks
,
T. J.
,
Krishnan
,
S.
,
Choi
,
C.
,
Chang
,
C.-h.
, and
Paul
,
B.
,
2010
, “
Enhancement of Pool-Boiling Heat Transfer Using Nanostructured Surfaces on Aluminum and Copper
,”
Int. J. Heat Mass Transfer
,
53
(
15–16
), pp.
3357
3365
.10.1016/j.ijheatmasstransfer.2010.02.025
153.
Rioux
,
R. P.
,
Nolan
,
E. C.
, and
Li
,
C. H.
,
2014
, “
A Systematic Study of Pool Boiling Heat Transfer on Structured Porous Surfaces: From Nanoscale Through Microscale to Macroscale
,”
AIP Adv.
,
4
(
11
), p.
117133
.10.1063/1.4902343
154.
Ujereh
,
S.
,
Fisher
,
T.
, and
Mudawar
,
I.
,
2007
, “
Effects of Carbon Nanotube Arrays on Nucleate Pool Boiling
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4023
4038
.10.1016/j.ijheatmasstransfer.2007.01.030
155.
Bertossi
,
R.
,
Caney
,
N.
,
Gruss
,
J. A.
,
Dijon
,
J.
,
Fournier
,
A.
, and
Marty
,
P.
,
2015
, “
Influence of Carbon Nanotubes on Deionized Water Pool Boiling Performances
,”
Exp. Therm. Fluid Sci.
,
61
, pp.
187
193
.10.1016/j.expthermflusci.2014.10.028
156.
Kumar
,
U.
,
Suresh
,
S.
,
Thansekhar
,
M.
, and
Babu
,
D.
,
2017
, “
Effect of Diameter of Metal Nanowires on Pool Boiling Heat Transfer With FC-72
,”
Appl. Surf. Sci.
,
423
, pp.
509
520
.10.1016/j.apsusc.2017.06.135
157.
Yao
,
Z.
,
Lu
,
Y.-W.
, and
Kandlikar
,
S.
,
2011
, “
Effects of Nanowire Height on Pool Boiling Performance of Water on Silicon Chips
,”
Int. J. Therm. Sci.
,
50
(
11
), pp.
2084
2090
.10.1016/j.ijthermalsci.2011.06.009
158.
Jaikumar
,
A.
, and
Kandlikar
,
S. G.
,
2015
, “
Enhanced Pool Boiling Heat Transfer Mechanisms for Selectively Sintered Open Microchannels
,”
Int. J. Heat Mass Transfer
,
88
, pp.
652
661
.10.1016/j.ijheatmasstransfer.2015.04.100
159.
Ahn
,
H. S.
,
Lee
,
C.
,
Kim
,
H.
,
Jo
,
H.
,
Kang
,
S.
,
Kim
,
J.
,
Shin
,
J.
, and
Kim
,
M. H.
,
2010
, “
Pool Boiling CHF Enhancement by Micro/Nanoscale Modification of Zircaloy-4 Surface
,”
Nucl. Eng. Des.
,
240
(
10
), pp.
3350
3360
.10.1016/j.nucengdes.2010.07.006
160.
Wen
,
M. Y.
,
Ho
,
C. Y.
, and
Jang
,
K. J.
,
2012
, “
Characteristics of Pool Boiling Heat Transfer From Sintered Surfaces
,”
Adv. Mater. Res
,
566
, pp.
382
385
.10.4028/www.scientific.net/AMR.566.382
161.
Zhang
,
K.
,
Bai
,
L.
,
Lin
,
G.
,
Jin
,
H.
, and
Wen
,
D.
,
2019
, “
Experimental Study on Pool Boiling in a Porous Artery Structure
,”
Appl. Therm. Eng.
,
149
, pp.
377
384
.10.1016/j.applthermaleng.2018.12.089
162.
Joseph
,
A.
,
Mohan
,
S.
,
Kumar
,
C. S.
,
Mathew
,
A.
,
Thomas
,
S.
,
Vishnu
,
B.
, and
Sivapirakasam
,
S.
,
2019
, “
An Experimental Investigation on Pool Boiling Heat Transfer Enhancement Using Sol-Gel Derived Nano-Cuo Porous Coating
,”
Exp. Therm. Fluid Sci.
,
103
, pp.
37
50
.10.1016/j.expthermflusci.2018.12.033
163.
Khan
,
S. A.
,
Sezer
,
N.
, and
Koç
,
M.
,
2019
, “
Design, Fabrication and Nucleate Pool-Boiling Heat Transfer Performance of Hybrid Micro-Nano Scale 2-D Modulated Porous Surfaces
,”
Appl. Therm. Eng.
,
153
, pp.
168
180
.10.1016/j.applthermaleng.2019.02.133
164.
Moghadasi
,
H.
, and
Saffari
,
H.
,
2021
, “
Experimental Study of Nucleate Pool Boiling Heat Transfer Improvement Utilizing Micro/Nanoparticles Porous Coating on Copper Surfaces
,”
Int. J. Mech. Sci.
,
196
, p.
106270
.10.1016/j.ijmecsci.2021.106270
165.
Mehdikhani
,
A.
,
Moghadasi
,
H.
, and
Saffari
,
H.
,
2020
, “
An Experimental Investigation of Pool Boiling Augmentation Using Four-Step Electrodeposited Micro/Nanostructured Porous Surface in Distilled Water
,”
Int. J. Mech. Sci.
,
187
, p.
105924
.10.1016/j.ijmecsci.2020.105924
166.
Gheitaghy
,
A. M.
,
Saffari
,
H.
, and
Zhang
,
G. Q.
,
2019
, “
Effect of Nanostructured Microporous Surfaces on Pool Boiling Augmentation
,”
Heat Transfer Eng.
,
40
(
9–10
), pp.
762
771
.10.1080/01457632.2018.1442310
167.
Manetti
,
L. L.
,
Moita
,
A. S. O. H.
,
de Souza
,
R. R.
, and
Cardoso
,
E. M.
,
2020
, “
Effect of Copper Foam Thickness on Pool Boiling Heat Transfer of HFE-7100
,”
Int. J. Heat Mass Transfer
,
152
, p.
119547
.10.1016/j.ijheatmasstransfer.2020.119547
168.
Sezer
,
N.
,
Khan
,
S. A.
, and
Koç
,
M.
,
2019
, “
Amelioration of the Pool Boiling Heat Transfer Performance Via Self-Assembling of 3D Porous Graphene/Carbon Nanotube Hybrid Film Over the Heating Surface
,”
Int. J. Heat Mass Transfer
,
145
, p.
118732
.10.1016/j.ijheatmasstransfer.2019.118732
169.
Chen
,
G.
, and
Li
,
C. H.
,
2019
, “
Combined Effects of Liquid Wicking and Hydrodynamic Instability on Pool Boiling Critical Heat Flux by Two-Tier Copper Structures of Nanowires and Microgrooves
,”
Int. J. Heat Mass Transfer
,
129
, pp.
1222
1231
.10.1016/j.ijheatmasstransfer.2018.10.002
170.
Sitar
,
A.
,
Može
,
M.
,
Crivellari
,
M.
,
Schille
,
J.
, and
Golobič
,
I.
,
2020
, “
Nucleate Pool Boiling Heat Transfer on Etched and Laser Structured Silicon Surfaces
,”
Int. J. Heat Mass Transfer
,
147
, p.
118956
.10.1016/j.ijheatmasstransfer.2019.118956
171.
Kwak
,
H. J.
,
Kim
,
J. H.
,
Myung
,
B.-S.
,
Kim
,
M. H.
, and
Kim
,
D. E.
,
2018
, “
Behavior of Pool Boiling Heat Transfer and Critical Heat Flux on High Aspect-Ratio Microchannels
,”
Int. J. Therm. Sci.
,
125
, pp.
111
120
.10.1016/j.ijthermalsci.2017.11.025
172.
Pastuszko
,
R.
,
Kaniowski
,
R.
, and
Wójcik
,
T. M.
,
2020
, “
Comparison of Pool Boiling Performance for Plain Micro-Fins and Micro-Fins With a Porous Layer
,”
Appl. Therm. Eng.
,
166
, p.
114658
.10.1016/j.applthermaleng.2019.114658
173.
Zhang
,
C.
,
Zhang
,
L.
,
Xu
,
H.
,
Li
,
P.
, and
Qian
,
B.
,
2019
, “
Performance of Pool Boiling With 3D Grid Structure Manufactured by Selective Laser Melting Technique
,”
Int. J. Heat Mass Transfer
,
128
, pp.
570
580
.10.1016/j.ijheatmasstransfer.2018.09.021
174.
Pi
,
G.
,
Deng
,
D.
,
Chen
,
L.
,
Xu
,
X.
, and
Zhao
,
C.
,
2020
, “
Pool Boiling Performance of 3D-Printed Reentrant Microchannels Structures
,”
Int. J. Heat Mass Transfer
,
156
, p.
119920
.10.1016/j.ijheatmasstransfer.2020.119920
175.
Dewangan
,
A. K.
,
Kumar
,
A.
, and
Kumar
,
R.
,
2019
, “
Experimental Study of Nucleate Pool Boiling of R-134a and R-410a on a Porous Surface
,”
Heat Transfer Eng.
,
40
(
15
), pp.
1249
1258
.10.1080/01457632.2018.1460922
176.
Mondal
,
A.
, and
Kim
,
N.-H.
,
2019
, “
Nucleate Pool Boiling of r-134a on Enhanced Horizontal Surfaces Having Pores on Sub-Tunnels
,”
J. Enhanc. Heat Transfer
,
26
(
3
), pp.
195
216
.10.1615/JEnhHeatTransf.2019028532
177.
Chien
,
L.-H.
,
Tsai
,
Y.-L.
, and
Chang
,
C.-H.
,
2019
, “
A Study of Pool Boiling and Falling-Film Vaporization With R-245fa/Oil Mixtures on Horizontal Tubes
,”
Int. J. Heat Mass Transfer
,
133
, pp.
940
950
.10.1016/j.ijheatmasstransfer.2018.12.176
178.
Tang
,
J.
,
Sun
,
L.
,
Wu
,
D.
,
Du
,
M.
,
Xie
,
G.
, and
Yang
,
K.
,
2019
, “
Effects of Ultrasonic Waves on Subcooled Pool Boiling on a Small Plain Heating Surface
,”
Chem. Eng. Sci.
,
201
, pp.
274
287
.10.1016/j.ces.2019.03.009
179.
Shen
,
G.
,
Ma
,
L.
,
Zhang
,
S.
,
Zhang
,
S.
, and
An
,
L.
,
2019
, “
Effect of Ultrasonic Waves on Heat Transfer in Al2O3 Nanofluid Under Natural Convection and Pool Boiling
,”
Int. J. Heat Mass Transfer
,
138
, pp.
516
523
.10.1016/j.ijheatmasstransfer.2019.04.071
180.
Zarei Saleh Abad
,
M.
,
Ebrahimi-Dehshali
,
M.
,
Bijarchi
,
M. A.
,
Shafii
,
M. B.
, and
Moosavi
,
A.
,
2019
, “
Visualization of Pool Boiling Heat Transfer of Magnetic Nanofluid
,”
Heat Transfer–Asian Res.
,
48
(
7
), pp.
2700
2713
.10.1002/htj.21498
181.
Sarafraz
,
M. M.
,
Pourmehran
,
O.
,
Yang
,
B.
,
Arjomandi
,
M.
, and
Ellahi
,
R.
,
2020
, “
Pool Boiling Heat Transfer Characteristics of Iron Oxide Nano-Suspension Under Constant Magnetic Field
,”
Int. J. Therm. Sci.
,
147
, p.
106131
.10.1016/j.ijthermalsci.2019.106131
182.
Howard
,
A. H.
, and
Mudawar
,
I.
,
1999
, “
Orientation Effects on Pool Boiling Critical Heat Flux (Chf) and Modeling of Chf for Near-Vertical Surfaces
,”
Int. J. Heat Mass Transfer
,
42
(
9
), pp.
1665
1688
.10.1016/S0017-9310(98)00233-6
183.
Gondchawar
,
A. S.
,
Acharya
,
A. R.
, and
Pise
,
A. T.
,
2014
, “
Effect of Surface Orientation on Pool Boiling of Water-Ethanol Mixture for Upward Facing Surface
,”
Int. J. Res. Eng. Appl. Sci.
, 2, pp.
99
102
.https://www.researchgate.net/publication/279205657_EFFECT_OF_SURFACE_ORIENTATION_ON_POOL_BOILING_OF_WATERETHANOL_MIXTURE_FOR_UPWARD_FACING_SURFACE
184.
El-Genk
,
M. S.
, and
Parker
,
J. L.
,
2008
, “
Nucleate Boiling of FC-72 and HFE-7100 on Porous Graphite at Different Orientations and Liquid Subcooling
,”
Energy Convers. Manage.
,
49
(
4
), pp.
733
750
.10.1016/j.enconman.2007.07.028
185.
Jun
,
S.
,
Kim
,
J.
,
You
,
S. M.
, and
Kim
,
H. Y.
,
2016
, “
Effect of Heater Orientation on Pool Boiling Heat Transfer From Sintered Copper Microporous Coating in Saturated Water
,”
Int. J. Heat Mass Transfer
,
103
, pp.
277
284
.10.1016/j.ijheatmasstransfer.2016.07.030
186.
Jung
,
S.
, and
Kim
,
H.
,
2016
, “
Effects of Surface Orientation on Nucleate Boiling Heat Transfer in a Pool of Water Under Atmospheric Pressure
,”
Nucl. Eng. Des.
,
305
, pp.
347
358
.10.1016/j.nucengdes.2016.06.013
187.
Chuang
,
T.
,
Chang
,
Y.
, and
Ferng
,
Y.
,
2019
, “
Investigating Effects of Heating Orientations on Nucleate Boiling Heat Transfer, Bubble Dynamics, and Wall Heat Flux Partition Boiling Model for Pool Boiling
,”
Appl. Therm. Eng.
,
163
, p.
114358
.10.1016/j.applthermaleng.2019.114358
188.
Laca
,
P.
, and
Wirtz
,
R.
,
2009
, “
Sub-Atmospheric Pressure Pool Boiling of Water on a Screen Laminate-Enhanced Extended Surface
,”
25th Annual IEEE Semiconductor Thermal Measurement and Management Symposium
, San Jose, CA, Mar. 15–19
, pp.
9
16
.10.1109/STHERM.2009.4810736
189.
Tanjung
,
E. F.
, and
Jo
,
D.
,
2018
, “
Boiling Visualization and Critical Heat Flux (CHF) Phenomena on PCB in a Saturated Pool at Various Surface Orientations
,”
ASME
Paper No. ICONE26-81382.10.1115/ICONE26-81382
190.
Fazel
,
S. A.
,
Sarafraz
,
M.
,
Shamsabadi
,
A. A.
, and
Peyghambarzadeh
,
S.
,
2013
, “
Pool Boiling Heat Transfer in Diluted Water/Glycerol Binary Solutions
,”
Heat Transfer Eng.
,
34
(
10
), pp.
828
837
.10.1080/01457632.2012.746157
191.
Hetsroni
,
G.
,
Mosyak
,
A.
,
Pogrebnyak
,
E.
,
Sher
,
I.
, and
Segal
,
Z.
,
2006
, “
Bubble Growth in Saturated Pool Boiling in Water and Surfactant Solution
,”
Int. J. Multiphase Flow
,
32
(
2
), pp.
159
182
.10.1016/j.ijmultiphaseflow.2005.10.002
192.
Narayan
,
G. P.
,
Anoop
,
K.
,
Sateesh
,
G.
, and
Das
,
S. K.
,
2008
, “
Effect of Surface Orientation on Pool Boiling Heat Transfer of Nanoparticle Suspensions
,”
Int. J. Multiphase Flow
,
34
(
2
), pp.
145
160
.10.1016/j.ijmultiphaseflow.2007.08.004
193.
Jung
,
D.
,
Venart
,
J.
, and
Sousa
,
A.
,
1987
, “
Effects of Enhanced Surfaces and Surface Orientation on Nucleate and Film Boiling Heat Transfer in R-11
,”
Int. J. Heat Mass Transfer
,
30
(
12
), pp.
2627
2639
.10.1016/0017-9310(87)90144-X
194.
Dadjoo
,
M.
,
Etesami
,
N.
, and
Esfahany
,
M. N.
,
2017
, “
Influence of Orientation and Roughness of Heater Surface on Critical Heat Flux and Pool Boiling Heat Transfer Coefficient of Nanofluid
,”
Appl. Therm. Eng.
,
124
, pp.
353
361
.10.1016/j.applthermaleng.2017.06.025
195.
Ho
,
J.
,
Leong
,
K.
, and
Yang
,
C.
,
2014
, “
Saturated Pool Boiling From Carbon Nanotube Coated Surfaces at Different Orientations
,”
Int. J. Heat Mass Transfer
,
79
, pp.
893
904
.10.1016/j.ijheatmasstransfer.2014.08.053
196.
Islam
,
M. S.
,
Haque
,
K. T.
, and
Saha
,
S. C.
,
1970
, “
An Experimental Investigation of Pool Boiling at Atmospheric Pressure
,”
Daffodil Int. Univ. J. Sci. Technol.
,
6
(
1
), pp.
80
86
.10.3329/diujst.v6i1.9337
197.
Kakaç
,
S.
,
1994
, “
Introduction to ASI on Cooling of Electronic Systems
,”
Cooling Electronic Systems
, Springer, Berlin, pp.
1
15
.
198.
Bar-Cohen
,
A.
,
1994
, “
Fundamentals of Nucleate Pool Boiling of Highly-Wetting Dielectric Liquids
,”
Cooling of Electronic Systems
,
Springer
, New York, pp.
415
455
.
199.
Guglielmini
,
G.
,
Misale
,
M.
, and
Schenone
,
C.
,
1996
, “
Experiments on Pool Boiling of a Dielectric Fluid on Extended Surfaces
,”
Int. Commun. Heat Mass Transfer
,
23
(
4
), pp.
451
462
.10.1016/0735-1933(96)00030-9
200.
Cardenas
,
R.
, and
Narayanan
,
V.
,
2012
, “
Comparison of Deionized Water and FC-72 in Pool and Jet Impingement Boiling Thermal Management
,”
IEEE Trans. Compon., Packaging Manuf. Technol.
,
2
(
11
), pp.
1811
1823
.10.1109/TCPMT.2012.2210717
201.
El-Genk
,
M. S.
, and
Suszko
,
A.
,
2016
, “
Effects of Inclination Angle and Liquid Subcooling on Nucleate Boiling on Dimpled Copper Surfaces
,”
Int. J. Heat Mass Transfer
,
95
, pp.
650
661
.10.1016/j.ijheatmasstransfer.2015.12.048
202.
Bergles
,
A. E.
, and
Bar-Cohen
,
A.
,
1994
, “
Immersion Cooling of Digital Computers
,”
Cooling of Electronic Systems
,
Springer
, New York, pp.
539
621
.
203.
Khan
,
A.
, and
Ali
,
H.
, M
2019
, “
A Comprehensive Review on Pool Boiling Heat Transfer Using Nanofluids
,”
Therm. Sci.
,
23
(
5 Part B
), pp.
3209
3237
.10.2298/TSCI190110072K
204.
Das
,
S. K.
,
Putra
,
N.
, and
Roetzel
,
W.
,
2003
, “
Pool Boiling Characteristics of Nano-Fluids
,”
Int. J. Heat Mass Transfer
,
46
(
5
), pp.
851
862
.10.1016/S0017-9310(02)00348-4
205.
Bhanvase
,
B. A.
,
Barai
,
D. P.
,
Sonawane
,
S. H.
,
Kumar
,
N.
, and
Sonawane
,
S. S.
,
2018
, “
Intensified Heat Transfer Rate With the Use of Nanofluids
,”
Handbook of Nanomaterials for Industrial Applications
,
Elsevier
, Amsterdam, The Netherlands, pp.
739
750
.
206.
Prakash
,
C. J.
, and
Prasanth
,
R.
,
2018
, “
Enhanced Boiling Heat Transfer by Nano Structured Surfaces and Nanofluids
,”
Renewable Sustainable Energy Rev.
,
82
, pp.
4028
4043
.10.1016/j.rser.2017.10.069
207.
Mohamadifard
,
K.
,
Zeinali Heris
,
S.
, and
Honarmand
,
M.
,
2014
, “
Experimental Investigation of Pool Boiling Performance of Alumina/Ethylene-Glycol/Water (60/40) Nanofluids
,”
J. Thermophys. Heat Transfer
,
28
(
4
), pp.
724
734
.10.2514/1.T4071
208.
Wen
,
D.
, and
Ding
,
Y.
,
2005
, “
Experimental Investigation Into the Pool Boiling Heat Transfer of Aqueous Based γ-Alumina Nanofluids
,”
J. Nanopart. Res.
,
7
(
2–3
), pp.
265
274
.10.1007/s11051-005-3478-9
209.
Liang
,
G.
, and
Mudawar
,
I.
,
2018
, “
Review of Pool Boiling Enhancement With Additives and Nanofluids
,”
Int. J. Heat Mass Transfer
,
124
, pp.
423
453
.10.1016/j.ijheatmasstransfer.2018.03.046
210.
Cieśliński
,
J. T.
, and
Krygier
,
K.
,
2014
, “
Augmentation of the Critical Heat Flux in Water-al2o3, Water-tio2 and Water-cu Nanofluids
,”
MATEC Web of Conferences
, Vol.
18
,
EDP Sciences
, Seri Iskandar, Perak, Malaysia, Aug. 27, p.
01012
.10.1051/matecconf/20141801012
211.
Pioro
,
I.
,
Rohsenow
,
W.
, and
Doerffer
,
S.
,
2004
, “
Nucleate Pool-Boiling Heat Transfer. I: Review of Parametric Effects of Boiling Surface
,”
Int. J. Heat Mass Transfer
,
47
(
23
), pp.
5033
5044
.10.1016/j.ijheatmasstransfer.2004.06.019
212.
You
,
S. M.
,
Kim
,
J. H.
, and
Kim
,
K. H.
,
2003
, “
Effect of Nanoparticles on Critical Heat Flux of Water in Pool Boiling Heat Transfer
,”
Appl. Phys. Lett.
,
83
(
16
), pp.
3374
3376
.10.1063/1.1619206
213.
Ayoobi
,
A.
,
Khorasani
,
A. F.
,
Tavakoli
,
M. R.
, and
Salimpour
,
M. R.
,
2019
, “
Experimental Study of the Time Period of Continued Heating Rate on the Pool Boiling Characteristics of Saturated Water
,”
Int. J. Heat Mass Transfer
,
137
, pp.
318
327
.10.1016/j.ijheatmasstransfer.2019.03.083
214.
Kouloulias
,
K.
,
Sergis
,
A.
,
Hardalupas
,
Y.
, and
Barrett
,
T.
,
2019
, “
Visualisation of Subcooled Pool Boiling in Nanofluids
,”
Fusion Eng. Des.
,
146
, pp.
153
156
.10.1016/j.fusengdes.2018.12.005
215.
Kim
,
S.
,
Bang
,
I.
,
Buongiorno
,
J.
, and
Hu
,
L.
,
2007
, “
Surface Wettability Change During Pool Boiling of Nanofluids and Its Effect on Critical Heat Flux
,”
Int. J. Heat Mass Transfer
,
50
(
19–20
), pp.
4105
4116
.10.1016/j.ijheatmasstransfer.2007.02.002
216.
Kathiravan
,
R.
,
Kumar
,
R.
,
Gupta
,
A.
, and
Chandra
,
R.
,
2010
, “
Preparation and Pool Boiling Characteristics of Copper Nanofluids Over a Flat Plate Heater
,”
Int. J. Heat Mass Transfer
,
53
(
9–10
), pp.
1673
1681
.10.1016/j.ijheatmasstransfer.2010.01.022
217.
Sarafraz
,
M.
,
Kiani
,
T.
, and
Hormozi
,
F.
,
2016
, “
Critical Heat Flux and Pool Boiling Heat Transfer Analysis of Synthesized Zirconia Aqueous Nano-Fluids
,”
Int. Commun. Heat Mass Transfer
,
70
, pp.
75
83
.10.1016/j.icheatmasstransfer.2015.12.008
218.
Cieśliński
,
J.
, and
Kaczmarczyk
,
T.
,
2011
, “
The Effect of Pressure on Heat Transfer During Pool Boiling of Water-A12O3 and Water-Cu Nanofluids on Stainless Steel Smooth Tube
,”
Chem. Process Eng.
,
32
(
4
), pp.
321
332
.10.2478/v10176-011-0026-2
219.
Thome
,
J. R.
,
1983
, “
Boiling Heat Transfer in Binary Liquid Mixtures
,”
Advances in Two-Phase Flow and Heat Transfer
,
Springer
, New York, pp.
275
319
.
220.
Tzan
,
Y. L.
, and
Yang
,
Y. M.
,
1988
, “
Pool Boiling of Binary Mixtures
,”
Chem. Eng. Commun.
,
66
(
1
), pp.
71
82
.10.1080/00986448808940261
221.
Fujita
,
Y.
, and
Tsutsui
,
M.
,
1994
, “
Heat Transfer in Nucleate Pool Boiling of Binary Mixtures
,”
Int. J. Heat Mass Transfer
,
37
, pp.
291
302
.10.1016/0017-9310(94)90030-2
222.
Kandlikar
,
S.
, and
Alves
,
L.
,
1999
, “
Effects of Surface Tension and Binary Diffusion on Pool Boiling of Dilute Solutions: An Experimental Assessment
,”
ASME J. Heat Transfer-Trans. ASME
,
121
(
2
), pp.
488
493
.10.1115/1.2826008
223.
Gupta
,
P.
,
Hayat
,
M.
, and
Srivastava
,
R.
,
2019
, “
A Review on Nucleate Pool Boiling Heat Transfer of Binary Mixtures
,”
Asian J. Water, Environ. Pollut.
,
16
(
2
), pp.
27
34
.10.3233/AJW190016
224.
Jung
,
S.
, and
Kim
,
H.
,
2019
, “
Observation of the Mechanism Triggering Critical Heat Flux in Pool Boiling of Saturated Water Under Atmospheric Pressure
,”
Int. J. Heat Mass Transfer
,
128
, pp.
229
238
.10.1016/j.ijheatmasstransfer.2018.08.128
225.
Ohta
,
H.
,
Shinmoto
,
Y.
,
Yamamoto
,
D.
, and
Iwata
,
K.
,
2016
, “
Boiling of Immiscible Mixtures for Cooling of Electronics
,”
Electronics Cooling
, InTech, pp.
11
29
.10.5772/62341
226.
Van Stralen
,
S.
,
Sohal
,
M.
,
Cole
,
R.
, and
Sluyter
,
W.
,
1975
, “
Bubble Growth Rates in Pure and Binary Systems: Combined Effect of Relaxation and Evaporation Microlayers
,”
Int. J. Heat Mass Transfer
,
18
(
3
), pp.
453
467
.10.1016/0017-9310(75)90033-2
227.
Alavi
,
F. S.
,
Jami
,
A. M.
, and
Seyf
,
K. A.
,
2008
, “
Experimental Investigation in Pool Boiling Heat Transfer of Pure/Binary Mixtures and Heat Transfer Correlations
,” Q. Iran. J. Chem. Chem. Eng. (
IJCCE
), 27(3), pp.
135
150
.10.30492/IJCCE.2008.6979
228.
Gil
,
B.
,
Rogala
,
Z.
, and
Dorosz
,
P.
,
2019
, “
Pool Boiling Heat Transfer Coefficient of Low-Pressure Glow Plasma Treated Water at Atmospheric and Reduced Pressure
,”
Energies
,
13
(
1
), p.
69
.10.3390/en13010069
229.
Park
,
S. D.
,
Won Lee
,
S.
,
Kang
,
S.
,
Bang
,
I. C.
,
Kim
,
J. H.
,
Shin
,
H. S.
,
Lee
,
D. W.
, and
Won Lee
,
D.
,
2010
, “
Effects of Nanofluids Containing Graphene/Graphene-Oxide Nanosheets on Critical Heat Flux
,”
Appl. Phys. Lett.
,
97
(
2
), p.
023103
.10.1063/1.3459971
230.
Balandin
,
A. A.
,
2011
, “
Thermal Properties of Graphene and Nanostructured Carbon Materials
,”
Nat. Mater.
,
10
(
8
), pp.
569
581
.10.1038/nmat3064
231.
Kim
,
K.
,
He
,
J.
,
Ganeshan
,
B.
, and
Liu
,
J.
,
2018
, “
Disorder Enhanced Thermal Conductivity Anisotropy in Two-Dimensional Materials and Van Der Waals Heterostructures
,”
J. Appl. Phys.
,
124
(
5
), p.
055104
.10.1063/1.5031147
232.
Chen
,
S.
,
Wu
,
Q.
,
Mishra
,
C.
,
Kang
,
J.
,
Zhang
,
H.
,
Cho
,
K.
,
Cai
,
W.
,
Balandin
,
A. A.
, and
Ruoff
,
R. S.
,
2012
, “
Thermal Conductivity of Isotopically Modified Graphene
,”
Nat. Mater.
,
11
(
3
), pp.
203
207
.10.1038/nmat3207
233.
Akbari
,
A.
,
Fazel
,
S. A. A.
,
Maghsoodi
,
S.
, and
Kootenaei
,
A. S.
,
2019
, “
Pool Boiling Heat Transfer Characteristics of Graphene-Based Aqueous Nanofluids
,”
J. Therm. Anal. Calorim.
,
135
(
1
), pp.
697
711
.10.1007/s10973-018-7182-2
234.
Ahn
,
H. S.
,
Kim
,
J. M.
, and
Kim
,
M. H.
,
2013
, “
Experimental Study of the Effect of a Reduced Graphene Oxide Coating on Critical Heat Flux Enhancement
,”
Int. J. Heat Mass Transfer
,
60
, pp.
763
771
.10.1016/j.ijheatmasstransfer.2013.01.052
235.
Akbari
,
A.
,
Mohammadian
,
E.
,
Alavi Fazel
,
S. A.
,
Shanbedi
,
M.
,
Bahreini
,
M.
,
Heidari
,
M.
, and
Ahmadi
,
G.
,
2019
, “
Comparison Between Nucleate Pool Boiling Heat Transfer of Graphene Nanoplatelet-and Carbon Nanotube-Based Aqueous Nanofluids
,”
ACS Omega
,
4
(
21
), pp.
19183
19192
.10.1021/acsomega.9b02474
236.
Lay
,
K. K.
,
Ong
,
J. S.
,
Yong
,
K. Y.
,
Tan
,
M. K.
, and
Hung
,
Y. M.
,
2019
, “
Nucleate Pool Boiling Enhancement by Ultrafast Water Permeation in Graphene-Nanostructure
,”
Int. Commun. Heat Mass Transfer
,
101
, pp.
26
34
.10.1016/j.icheatmasstransfer.2018.12.015
237.
Arik
,
M.
, and
Bar-Cohen
,
A.
,
2003
, “
Effusivity-Based Correlation of Surface Property Effects in Pool Boiling CHF of Dielectric Liquids
,”
Int. J. Heat Mass Transfer
,
46
(
20
), pp.
3755
3764
.10.1016/S0017-9310(03)00215-1
238.
Rainey
,
K.
, and
You
,
S.
,
2000
, “
Pool Boiling Heat Transfer From Plain and Microporous, Square Pin-Finned Surfaces in Saturated FC-72
,”
ASME J. Heat Transfer-Trans. ASME
,
122
(
3
), pp.
509
516
.10.1115/1.1288708
You do not currently have access to this content.