Abstract

The transition of additive printed electronics into high-volume production requires process consistency to allow quality control of the manufactured product. Process recipes are needed for multilayer substrates with z-axis interconnects in order to enable complex systems. In this paper, process recipes have been developed through fundamental studies of the interactions between the process parameters and the mechanical–electrical performance achieved for multilayer substrates. The study reported in this paper focuses on printed vias also known as donut vias. Aerosol jet process parameters studied include carrier mass flow rate, sheath mass flow rate, exhaust mass flow rate, print speed, number of passes, sintering time and temperature, UV-intensity for UV-cure, and standoff height. The electrical performance has been quantified through the measurements of resistance. The mechanical performance has been quantified through measurement of shear load-to-failure. The effect of sequential build-up on the mechanical–electrical properties vs process parameters has been quantified for up to eight-layers designs. The performance of five-layer and eight-layer additively printed substrate designs and effect of multiple vias has been compared to assess process consistency.

References

1.
Secor
,
E. B.
,
2018
, “
Principles of Aerosol Jet Printing
,”
Flexible Printed Electron.
,
3
(
3
), p.
035002
.10.1088/2058-8585/aace28
2.
Hong
,
K.
,
Kim
,
S. H.
,
Mahajan
,
A.
, and
Frisbie
,
C. D.
,
2014
, “
Aerosol Jet Printed p-and n-Type Electrolyte-Gated Transistors With a Variety of Electrode Materials: Exploring Practical Routes to Printed Electronics
,”
ACS Appl. Mater. Interfaces
,
6
(
21
), pp.
18704
18711
.10.1021/am504171u
3.
Mette
,
A.
,
Richter
,
P. L.
,
Hörteis
,
M.
, and
Glunz
,
S. W.
,
2007
, “
Metal Aerosol Jet Printing for Solar Cell Metallization
,”
Prog. Photovolt. Res. Appl.
,
15
(
7
), pp.
621
627
.10.1002/pip.759
4.
Arsenov
,
P. V.
,
Vlasov
,
I. S.
,
Efimov
,
A. A.
,
Minkov
,
K. N.
, and
Ivanov
,
V. V.
,
2019
, “
Aerosol Jet Printing of Platinum Microheaters for the Application in Gas Sensors
,”
IOP Conf. Ser. Mater. Sci. Eng.
,
473
(
1)
, p.
012042
.10.1088/1757-899X/473/1/012042
5.
He
,
Y.
,
Oakley
,
C.
,
Chahal
,
P.
,
Albrecht
,
J.
, and
Papapolymerou
,
J.
,
2017
, “
Aerosol Jet Printed 24 GHz End-Fire Quasi-Yagi-Uda Antenna on a 3-D Printed Cavity Substrate
,” International Workshop on Antenna Technology: Small Antennas, Innovative Structures, and Applications (
iWAT
),
IEEE
, Athens, Greece, Mar. 1–3, pp.
179
182
.10.1109/IWAT.2017.7915352
6.
Cai
,
F.
,
Pavlidis
,
S.
,
Papapolymerou
,
J.
,
Chang
,
Y. H.
,
Wang
,
K.
,
Zhang
,
C.
, and
Wang
,
B.
,
2014
, October, “
Aerosol Jet Printing for 3-D Multilayer Passive Microwave Circuitry
,”
44th European Microwave Conference
,
IEEE
, Rome, Italy, Oct. 6–9, pp.
512
515
.10.1109/EuMC.2014.6986483
7.
Elmogi
,
A.
,
Soenen
,
W.
,
Ramon
,
H.
,
Yin
,
X.
,
Missinne
,
J.
,
Spiga
,
S.
,
Amann
,
M.-C.
,
Srinivasan
,
A.
,
De Heyn
,
P.
,
Van Campenhout
,
J.
,
Bauwelinck
,
J.
, and
Van Steenberge
,
G.
,
2018
, “
Aerosol-Jet Printed Interconnects for 2.5 d Electronic and Photonic Integration
,”
J. Lightwave Technol.
,
36
(
16
), pp.
3528
3533
.10.1109/JLT.2018.2848699
8.
Mahajan
,
A.
,
Frisbie
,
C. D.
, and
Francis
,
L. F.
,
2013
, “
Optimization of Aerosol Jet Printing for High-Resolution, High-Aspect Ratio Silver Lines
,”
ACS Appl. Mater, Interfaces
,
5
(
11
), pp.
4856
4864
.10.1021/am400606y
9.
Goth
,
C.
,
Putzo
,
S.
, and
Franke
,
J.
,
2011
, “
Aerosol Jet Printing on Rapid Prototyping Materials for Fine Pitch Electronic Applications
,” IEEE 61st Electronic Components and Technology Conference (
ECTC
), Lake Buena Vista, FL, May 31–June 3, pp.
1211
1216
.10.1109/ECTC.2011.5898664
10.
Gupta
,
A. A.
,
Bolduc
,
A.
,
Cloutier
,
S. G.
, and
Izquierdo
,
R.
,
2016
, “
Aerosol Jet Printing for Printed Electronics Rapid Prototyping
,” IEEE International Symposium on Circuits and Systems (
ISCAS
),
IEEE
, Montreal, QC, Canada, May 22–25, pp.
866
869
.10.1109/ISCAS.2016.7527378
11.
Stoukatch
,
S.
,
Laurent
,
P.
,
Dricot
,
S.
,
Axisa
,
F.
,
Seronveaux
,
L.
,
Vandormael
,
D.
, and
Destiné
,
J.
,
2012
, “
Evaluation of Aerosol Jet Printing (AJP) Technology for Electronic Packaging and Interconnect Technique
,”
Fourth Electronic System-Integration Technology Conference
, IEEE, Amsterdam, The Netherlands, Sept. 17–20, pp.
1
5
.10.1109/ESTC.2012.6542067
12.
Navratil
,
J.
,
Rericha
,
T.
,
Soukup
,
R.
, and
Hamacek
,
A.
,
2018
, “
Aerosol Jet Printed Sensor on Fibre for Smart and IoT Applications
,” 41st International Spring Seminar on Electronics Technology (
ISSE)
, IEEE, Zlatibor, Serbia, May 16–20, pp.
1
4
.10.1109/ISSE.2018.8443609
13.
Lall
,
P.
,
Goyal
,
K.
,
Leever
,
B.
, and Miller, S., 2019, “
Factors Influencing the Line Consistency of Commonly Used Geometries for Additively Printed Electronics
,” 18th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
), Las Vegas, NV, May 28–31, pp.
863
869
.10.1109/ITHERM.2019.8757308
14.
Lall
,
P.
,
Goyal
,
K.
,
Kothari
,
N.
,
Leever
,
B.
, and
Miller
,
S.
,
2019
, “
Effect of Process Parameters on Aerosol Jet Printing of Multi-Layer Circuitry
,”
ASME
Paper No. IPACK2019-6574.10.1115/IPACK2019-6574
15.
Kujala
,
M.
,
Kololuoma
,
T.
,
Keskinen
,
J.
,
Lupo
,
D.
,
Mäntysalo
,
M.
, and
Kraft
,
T. M.
,
2020
, “
Bending Reliability of Screen-Printed Vias for a Flexible Energy Module
,”
NPJ Flexible Electron.
,
4
(
1
), pp.
1
8
.10.1038/s41528-020-00087-4
16.
Kim
,
S.
,
2020
, “
Inkjet-Printed Electronics on Paper for RF Identification (RFID) and Sensing
,”
Electronics
,
9
(
10
), p.
1636
.10.3390/electronics9101636
17.
Overmeyer
,
L.
,
Olsen
,
E.
, and
Hoffmann
,
G. A.
,
2021
, “
Additive Manufacturing of Copper Vertical Interconnect Accesses by Laser Processing
,”
CIRP Ann.
,
70
(
1
), pp.
163
166
.10.1016/j.cirp.2021.03.006
18.
Kim
,
C.
,
Espalin
,
D.
,
Liang
,
M.
,
Xin
,
H.
,
Cuaron
,
A.
,
Varela
,
I.
,
Macdonald
,
E.
, and
Wicker
,
R.
,
2017
, “
3D Printed Electronics With High Performance, Multi-Layered Electrical Interconnect
,”
IEEE Access
,
5
, pp.
25286
25294
.10.1109/ACCESS.2017.2773571
19.
Christenson
,
K. K.
,
Paulsen
,
J. A.
,
Renn
,
M. J.
,
McDonald
,
K.
, and
Bourassa
,
J.
,
2011
, “
Direct Printing of Circuit Boards Using Aerosol Jet®
,”
NIP & Digital Fabrication Conference
,
Society for Imaging Science and Technology
, Minneapolis, MI, Oct. 2–6, pp.
433
436
.https://www.imaging.org/site/PDFS/Reporter/Articles/2011_26/REP26_5_6_NIP27DF11_CHRISTENSON_PG433.pdf
20.
Lall
,
P.
,
Kothari
,
N.
,
Abrol
,
A.
,
Suhling
,
J.
, Ahmed, S., Leever, B., and Miller, S., 2019, “
Effect of Process Parameters on the Long-Run Print Consistency and Material Properties of Additively Printed Electronics
,” 2019 IEEE 69th Electronic Components and Technology Conference (
ECTC
), Las Vegas, NV, May 28–31, pp.
1347
1358
.10.1109/ECTC.2019.00209
21.
Panasonic Industrial Devices, 2022, “
Aicure UJ30/35 LED Spot Type UV Curing Systems
,” Panasonic Industrial Devices, Newark, NJ, accessed Apr. 20, 2022, https://www3.panasonic.biz/ac/na/fasys/uv/led/uj30-uj35/index.jsp
You do not currently have access to this content.