Abstract

This work presents an approach to optimally designing a composite with thermal conductivity enhancers infiltrated with phase change material based on figure of merit (FOM) for thermal management of portable electronic devices. The FOM defines the balance between effective thermal conductivity and energy storage capacity. In this study, thermal conductivity enhancers are in the form of a honeycomb structure. Thermal conductivity enhancers are often used in conjunction with phase change material to enhance the conductivity of the composite medium. Under constrained heat sink volume, the higher volume fraction of thermal conductivity enhancers improves the effective thermal conductivity of the composite, while it reduces the amount of latent heat storage simultaneously. This work arrives at the optimal design of composite for electronic cooling by maximizing the FOM to resolve the stated tradeoff. In this study, the total volume of the composite and the interfacial heat transfer area between the phase change material and thermal conductivity enhancers are constrained for all design points. A benchmarked two-dimensional direct computational fluid dynamics model was employed to investigate the thermal performance of the phase change material and thermal conductivity enhancer composite. Furthermore, assuming conduction-dominated heat transfer in the composite, a simplified effective numerical model that solves the single energy equation with the effective properties of the phase change material and thermal conductivity enhancer has been developed. The effective properties like heat capacity can be obtained by volume averaging; however, effective thermal conductivity (required to calculate FOM) is unknown. The effective thermal conductivity of the composite is obtained by minimizing the error between the transient temperature gradient of direct and simplified model by iteratively varying the effective thermal conductivity. The FOM is maximized to find the optimal volume fraction for the present design.

References

1.
Patapoutian
,
A.
,
Peier
,
A. M.
,
Story
,
G. M.
, and
Viswanath
,
V.
,
2003
, “
ThermoTRP Channels and Beyond: Mechanisms of Temperature Sensation
,”
Nat. Rev. Neurosci.
,
4
(
7
), p.
7
.10.1038/nrn1141
2.
Greenspan
,
J. D.
,
Roy
,
E. A.
,
Caldwell
,
P. A.
, and
Farooq
,
N. S.
,
2003
, “
Thermosensory Intensity and Affect Throughout the Perceptible Range
,”
Somatosens. Mot. Res
,
20
(
1
), pp.
19
26
.10.1080/0899022031000083807
3.
Choobineh
,
L.
, and
Jain
,
A.
,
2013
, “
Determination of Temperature Distribution in Three-Dimensional Integrated Circuits (3D ICs) With Unequally-Sized Die
,”
Appl. Therm. Eng
,
56
(
1–2
), pp.
176
184
.10.1016/j.applthermaleng.2013.03.006
4.
Rangarajan
,
S.
,
Hadad
,
Y.
,
Choobineh
,
L.
, and
Sammakia
,
B.
, Jun.
2020
, “
Minimizing Temperature Nonuniformity by Optimal Arrangement of Hotspots in Vertically Stacked Three-Dimensional Integrated Circuits
,”
ASME J. Electron. Packag.
,
142
(
4
), p. 041109.10.1115/1.4047471
5.
Choobineh
,
L.
, and
Jain
,
A.
,
2015
, “
An Explicit Analytical Model for Rapid Computation of Temperature Field in a Three-Dimensional Integrated Circuit (3D IC)
,”
Int. J. Therm. Sci
,
87
, pp.
103
109
.10.1016/j.ijthermalsci.2014.08.012
6.
Choobineh
,
L.
, and
Jain
,
A.
,
2012
, “
Analytical Solution for Steady-State and Transient Temperature Fields in Vertically Stacked 3-D Integrated Circuits
,”
IEEE Trans. Compon. Packag. Manuf. Technol
,
2
(
12
), pp.
2031
2039
.10.1109/TCPMT.2012.2213820
7.
Raghavan
,
A.
,
Luo
,
Y.
,
Chandawalla
,
A.
,
Papaefthymiou
,
M.
,
Pipe
,
K. P.
,
Wenisch
,
T. F.
, and
Martin
,
M. M.
,
2012
, “
Computational Sprinting
,”
IEEE International Symposium on High-Performance Comp Architecture
, New Orleans, LA, Feb. 25–29, pp.
1
12
.10.1109/HPCA.2012.6169031
8.
Fan
,
L.
, and
Khodadadi
,
J. M.
,
2011
, “
Thermal Conductivity Enhancement of Phase Change Materials for Thermal Energy Storage: A Review
,”
Renew. Sustainable Energy Rev.
,
15
(
1
), pp.
24
46
.10.1016/j.rser.2010.08.007
9.
Pereira da Cunha
,
J.
, and
Eames
,
P.
,
2016
, “
Thermal Energy Storage for Low and Medium Temperature Applications Using Phase Change Materials—A Review
,”
Appl. Energy
,
177
, pp.
227
238
.10.1016/j.apenergy.2016.05.097
10.
Zhou
,
D.
, and
Zhao
,
C. Y.
,
2011
, “
Experimental Investigations on Heat Transfer in Phase Change Materials (PCMs) Embedded in Porous Materials
,”
Appl. Therm. Eng
,
31
(
5
), pp.
970
977
.10.1016/j.applthermaleng.2010.11.022
11.
Liu
,
Z.
,
Yao
,
Y.
, and
Wu
,
H.
,
2013
, “
Numerical Modeling for Solid–Liquid Phase Change Phenomena in Porous Media: Shell-and-Tube Type Latent Heat Thermal Energy Storage
,”
Appl. Energy
,
112
, pp.
1222
1232
.10.1016/j.apenergy.2013.02.022
12.
Zhang
,
P.
,
Meng
,
Z. N.
,
Zhu
,
H.
,
Wang
,
Y. L.
, and
Peng
,
S. P.
,
2017
, “
Melting Heat Transfer Characteristics of a Composite Phase Change Material Fabricated by Paraffin and Metal Foam
,”
Appl. Energy
,
185
, pp.
1971
1983
.10.1016/j.apenergy.2015.10.075
13.
Bentilla
,
E. W.
,
Karre
,
L. E.
, and
Sterrett
,
R. F.
,
1966
, “
Research and Development Study on Thermal Control by Use of Fusible Materials Final Report
,” NASA, Washington, DC.
14.
Srikanth
,
R.
, and
Balaji
,
C.
,
2017
, “
Experimental Investigation on the Heat Transfer Performance of a PCM Based Pin Fin Heat Sink With Discrete Heating
,”
Int. J. Therm. Sci
,
111
, pp.
188
203
.10.1016/j.ijthermalsci.2016.08.018
15.
Shatikian
,
V.
,
Ziskind
,
G.
, and
Letan
,
R.
,
2008
, “
Numerical Investigation of a PCM-Based Heat Sink With Internal Fins: Constant Heat Flux
,”
Int. J. Heat Mass Transfer
,
51
(
5–6
), pp.
1488
1493
.10.1016/j.ijheatmasstransfer.2007.11.036
16.
Shamberger
,
P. J.
,
2015
, “
Cooling Capacity Figure of Merit for Phase Change Materials
,”
ASME J. Heat Transfer
,
138
(
2
), p.
024502
.10.1115/1.4031252
17.
Barako
,
M. T.
,
Lingamneni
,
S.
,
Katz
,
J. S.
,
Liu
,
T.
,
Goodson
,
K. E.
, and
Tice
,
J.
,
2018
, “
Optimizing the Design of Composite Phase Change Materials for High Thermal Power Density
,”
J. Appl. Phys
,
124
(
14
), p.
145103
.10.1063/1.5031914
18.
Hashin
,
Z.
, and
Shtrikman
,
S.
,
1962
, “
A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials
,”
J. Appl. Phys
,
33
(
10
), pp.
3125
3131
.10.1063/1.1728579
19.
Shamberger
,
P. J.
, and
Fisher
,
T. S.
,
2018
, “
Cooling Power and Characteristic Times of Composite Heatsinks and Insulants
,”
Int. J. Heat Mass Transfer
,
117
, pp.
1205
1215
.10.1016/j.ijheatmasstransfer.2017.10.085
20.
ShaoRaghavan
,
L.
,
Emurian
,
A. L.
,
Papaefthymiou
,
M. C.
,
Wenisch
,
T. F.
,
Martin
,
M. M.
, and and
Pipe
,
K. P.
,
2014
, “
On-Chip Phase Change Heat Sinks Designed for Computational Sprinting
,”
Semiconductor Thermal Measurement and Management Symposium (SEMI-THERM)
, San Jose, CA, Mar. 9–13, pp.
29
34
.10.1109/SEMITHERM.2014.6892211
21.
Ahmed
,
T.
,
Bhouri
,
M.
,
Groulx
,
D.
, and
White
,
M. A.
,
2018
, “
Passive Thermal Management of Tablet PCs Using Phase Change Materials: Continuous Operation
,”
Int. J. Therm. Sci.
,
134
, pp.
101
115
.10.1016/j.ijthermalsci.2018.08.010
22.
Voller
,
V. R.
, and
Prakash
,
C.
,
1987
, “
A Fixed Grid Numerical Modelling Methodology for Convection-Diffusion Mushy Region Phase-Change Problems
,”
Int. J. Heat Mass Transfer
,
30
(
8
), pp.
1709
1719
.10.1016/0017-9310(87)90317-6
23.
Simpson
,
J. E.
,
Garimella
,
S. V.
, and
de Groh
,
H. C.
,
2002
, “
Experimental and Numerical Investigation of the Bridgman Growth of a Transparent Material
,”
J. Thermophys. Heat Transfer
,
16
(
3
), pp.
324
335
.10.2514/2.6709
24.
Dantzig
,
J. A.
,
1989
, “
Modelling Liquid–Solid Phase Changes With Melt Convection
,”
Int. J. Numer. Methods Eng
,
28
(
8
), pp.
1769
1785
.10.1002/nme.1620280805
25.
Tavman
,
I. H.
,
1996
, “
Effective Thermal Conductivity of Granular Porous Materials
,”
Int. Commun. Heat Mass Transfer
,
23
(
2
), pp.
169
176
.10.1016/0735-1933(96)00003-6
26.
Woodside
,
W.
, and
Messmer
,
J. H.
,
1961
, “
Thermal Conductivity of Porous Media. I. Unconsolidated Sands
,”
J. Appl. Phys
,
32
(
9
), pp.
1688
1699
.10.1063/1.1728419
27.
Rangarajan
,
S.
, and
Balaji
,
C.
,
2019
,
Phase Change Material-Based Heat Sinks: A Multi-Objective Perspective
,
CRC Press
, Boca Raton, FL.
You do not currently have access to this content.