Abstract

Power semiconductor die placement on substrates used in high-power modules is generally optimized to minimize electrical parasitic (e.g., stray inductance, common-mode capacitance), taking into account the minimum spacing between semiconductor dies for thermal decoupling. The layout assumes sufficient heat spreading and transfer from dies to the cooling structure. Insulated metal substrate-based power module designs may lead to asymmetrical thermal resistance across the dies, which may cause significant temperature differences among the devices. Such unintentional thermal asymmetries can lead to oversizing the cooling system design or underusing the semiconductor power processing capability. This article proposes a thermal imbalance mitigation method that uses evolutionary optimized liquid-cooled heat sinks to improve the thermal loading among devices.

References

1.
U.S. Department of Energy, 2017, “
U.S. DRIVE Electrical and Electronics Technical Team Roadmap
,” U.S. Department of Energy, accessed Aug. 20, 2021, energy.gov/eere/vehicles/downloads/us-drive-electrical-and-electronics-technical-team-roadmap
2.
Gurpinar
,
E.
,
Wiles
,
R.
,
Ozpineci
,
B.
,
Raminosoa
,
T.
,
Zhou
,
F.
,
Liu
,
Y.
, and
Dede
,
E. M.
,
2018
, “
SiC MOSFET-Based Power Module Design and Analysis for EV Traction Systems
,” IEEE Energy Conversion Congress and Exposition (
ECCE
), Portland, OR, Sept. 23–27, pp.
1722
1727
.10.1109/ECCE.2018.8557609
3.
Gurpinar
,
E.
,
Ozpineci
,
B.
, and
Chowdhury
,
S.
,
2020
, “
Design, Analysis, Comparison, and Experimental Validation of Insulated Metal Substrates for High-Power Wide-Bandgap Power Modules
,”
ASME J. Electron. Packag.
,
142
(
4
), p.
041107
.10.1115/1.4047409
4.
Zeng
,
S.
,
Kanargi
,
B.
, and
Lee
,
P. S.
,
2018
, “
Experimental and Numerical Investigation of a Mini Channel Forced Air Heat Sink Designed by Topology Optimization
,”
Int. J. Heat Mass Transfer
,
121
, pp.
663
679
.10.1016/j.ijheatmasstransfer.2018.01.039
5.
Dede
,
E. M.
,
Joshi
,
S. N.
, and
Zhou
,
F.
,
2015
, “
Topology Optimization, Additive Layer Manufacturing, and Experimental Testing of an Air-Cooled Heat Sink
,”
ASME J. Mech. Des.
,
137
(
11
), p.
10
.10.1115/1.4030989
6.
Sun
,
S.
,
Liebersbach
,
P.
, and
Qian
,
X.
,
2019
, “
Large Scale 3D Topology Optimization of Conjugate Heat Transfer
,”
18th IEEE ITherm
, Las Vegas, NV, May 28–31, pp.
1
6
.10.1109/ITHERM.2019.8757230
7.
Wu
,
T.
,
Ozpineci
,
B.
,
Chinthavali
,
M. Z.
,
Wang
,
Debnath
,
S.
, and
Campbell
,
S.
,
2017
, “
Design and Optimization of 3D Printed Air-Cooled Heat Sinks Based on Genetic Algorithms
,” IEEE Transportation Electrification Conference and Expo (
ITEC
), Chicago, IL, June 22–24, pp.
650
655
.10.1109/ITEC.2017.7993346
8.
Ge
,
Y.
,
Wang
,
S.
,
Liu
,
Z.
, and
Liu
,
W.
,
2019
, “
Optimal Shape Design of a Minichannel Heat Sink Applying Multi-Objective Optimization Algorithm and Three-Dimensional Numerical Method
,”
Appl. Therm. Eng.
,
148
, pp.
120
128
.10.1016/j.applthermaleng.2018.11.038
9.
Dokken
,
C. B.
, and
Fronk
,
B. M.
,
2018
, “
Optimization of 3D Printed Liquid Cooled Heat Sink Designs Using a Micro-Genetic Algorithm With Bit Array Representation
,”
Appl. Therm. Eng.
,
143
, pp.
316
325
.10.1016/j.applthermaleng.2018.07.113
10.
Suganuma
,
K.
,
2018
,
Wide Bandgap Power Semiconductor Packaging: Materials, Components, and Reliability
,
Woodhead Publishing
, Woodhead Publishing, Duxford, UK.
11.
Sakanova
,
A.
, and
Tseng
,
K. J.
,
2018
, “
Comparison of Pin-Fin and Finned Shape Heat Sink for Power Electronics in Future Aircraft
,”
Appl. Therm. Eng.
,
136
, pp.
364
374
.10.1016/j.applthermaleng.2018.03.020
12.
Ma
,
L.
,
Kerekes
,
T.
,
Rodriguez
,
P.
,
Jin
,
X.
,
Teodorescu
,
R.
, and
Liserre
,
M.
,
2015
, “
A New Pwm Strategy for Grid-Connected Half-Bridge Active Npc Converters With Losses Distribution Balancing Mechanism
,”
IEEE Trans. Power Electron.
,
30
(
9
), pp.
5331
5340
.10.1109/TPEL.2014.2387152
13.
Gurpinar
,
E.
,
Chowdhury
,
S.
,
Ozpineci
,
B.
, and
Fan
,
W.
,
2021
, “
Graphite-Embedded High-Performance Insulated Metal Substrate for Wide-Bandgap Power Modules
,”
IEEE Trans. Power Electron.
,
36
(
1
), pp.
114
128
.10.1109/TPEL.2020.3001528
14.
Ma
,
K.
,
Bahman
,
A. S.
,
Beczkowski
,
S.
, and
Blaabjerg
,
F.
,
2015
, “
Complete Loss and Thermal Model of Power Semiconductors Including Device Rating Information
,”
IEEE Trans. Power Electron.
,
30
(
5
), pp.
2556
2569
.10.1109/TPEL.2014.2352341
15.
Sahu
,
R.
,
Gurpinar
,
E.
, and
Ozpineci
,
B.
,
2020
, “
Fourier Analysis-Based Evolutionary Multi-Objective Multiphysics Optimization of Liquid-Cooled Heat Sinks
,” 2020 IEEE Energy Conversion Congress and Exposition (
ECCE
), Detroit, MI, Oct. 11–15, pp.
4017
4023
.10.1109/ECCE44975.2020.9235943
16.
Sudhoff
,
S. D.
,
2014
,
Power Magnetic Devices: A Multi-Objective Design Approach
,
Wiley-IEEE
, John Wiley and Sons, Inc., Hoboken, NJ, pp.
1
44
.
17.
Purdue University, 2019, "Genetic Optimization System Engineering Toolbox (GOSET)," Purdue University, West Lafayette, IN, accessed Aug. 20, 2021, https://engineering.purdue.edu/ECE/Research/Areas/PES/Software/genetic-optimization-toolbox-2.6
18.
U.S. Department of Energy Vehicle Technologies Office,
2016
, “Benchmarking EV and HEV Technologies,” U.S. Department of Energy Vehicle Technologies Office, Washington, DC, accessed Aug. 17, 2021, energy.gov/sites/prod/files/2016/06/f32/edt006_burress_2016_o_web.pdf
19.
COMSOL Multiphysics,
2019
, “
COMSOL Multiphysics® v5.4
,” COMSOL AB, Stockholm, Sweden, accessed Aug. 17, 2021, www.comsol.com
You do not currently have access to this content.