Abstract
Power modules are being developed to increase power output. The larger current densities accompanying increased power output are expected to degrade solder joints in power modules by electromigration. In previous research, numerical analysis of solder for electromigration has mainly examined ball grid arrays in flip-chip packages in which many solder balls are bonded under the semiconductor device. However, in a power module, a single solder joint is uniformly bonded under the power device. Because of this difference in geometric shape, the effect of electromigration in the solder of power modules may be significantly different from that in the solder of flip chips packages. This report describes an electromigration analysis of solder joints for power modules using an electrical–thermal-stress coupled analysis. First, we validate our numerical implementation and show that it can reproduce the vacancy concentrations and hydrostatic stress almost the same as the analytical solutions. We then simulate a single solder joint to evaluate electromigration in a solder joint in a power module. Once inelastic strain appears, the rate of increase in vacancy concentration slows, while the inelastic strain continuously increases. This phenomenon demonstrates that elastic–plastic-creep analysis is crucial for electromigration analysis of solder joints in power modules. Next, the solder joint with a power device and a substrate as used in power modules was simulated. Plasticity-creep and longitudinal gradient generated by current crowding have a strong effect on significantly reducing the vacancy concentration at the anode edge over a long period of time.