Abstract

Power modules are being developed to increase power output. The larger current densities accompanying increased power output are expected to degrade solder joints in power modules by electromigration. In previous research, numerical analysis of solder for electromigration has mainly examined ball grid arrays in flip-chip packages in which many solder balls are bonded under the semiconductor device. However, in a power module, a single solder joint is uniformly bonded under the power device. Because of this difference in geometric shape, the effect of electromigration in the solder of power modules may be significantly different from that in the solder of flip chips packages. This report describes an electromigration analysis of solder joints for power modules using an electrical–thermal-stress coupled analysis. First, we validate our numerical implementation and show that it can reproduce the vacancy concentrations and hydrostatic stress almost the same as the analytical solutions. We then simulate a single solder joint to evaluate electromigration in a solder joint in a power module. Once inelastic strain appears, the rate of increase in vacancy concentration slows, while the inelastic strain continuously increases. This phenomenon demonstrates that elastic–plastic-creep analysis is crucial for electromigration analysis of solder joints in power modules. Next, the solder joint with a power device and a substrate as used in power modules was simulated. Plasticity-creep and longitudinal gradient generated by current crowding have a strong effect on significantly reducing the vacancy concentration at the anode edge over a long period of time.

References

1.
Arai
,
K.
,
2010
, “
R&D of SiC Semiconductor Power Devices and Strategy Towards Their Practical Utilization
,”
Synthesiology
,
3
(
4
), pp.
245
258
.10.5571/syntheng.3.245
2.
Harada
,
S.
,
Kobayashi
,
Y.
,
Kyogoku
,
S.
,
Morimoto
,
T.
,
Tanaka
,
T.
,
Takei
,
M.
, and
Okumura
,
H.
,
2018
, “
First Demonstration of Dynamic Characteristics for SiC Superjunction MOSFET Realized Using Multi-Epitaxial Growth Method
,”
Proceedings of IDEM
,
San Francisco, CA
, Dec. 1–5, pp.
8.2.1
8.2.4
.10.1109/IEDM.2018.8614670
3.
Kadoguchi
,
T.
,
Gotou
,
K.
,
Yamanaka
,
K.
,
Nagao
,
S.
, and
Suganuma
,
K.
,
2015
, “
Electromigration Behavior in Cu/Ni–P/Sn–Cu Based Joint System With Low Current Density
,”
Microelectron. Reliab.
,
55
(
12
), pp.
2554
2559
.10.1016/j.microrel.2015.10.003
4.
Tan
,
C. M.
,
2010
,
Electromigration in ULSI Interconnections
,
World Scientific Publishing Co. Pte. Ltd
,
Singapore
.
5.
Liu
,
Y.
,
Liang
,
L.
,
Irving
,
S.
, and
Luk
,
T.
,
2008
, “
3D Modeling of Electromigration Combined With Thermal-Mechanical Effect for IC Device and Package
,”
Microelectron. Reliab.
,
48
(
6
), pp.
811
824
.10.1016/j.microrel.2008.03.021
6.
Kim
,
D.
,
2009
, “
Three-Dimensional Model for Electromigration Induced Evolution of Flip Chip Solder Joints
,”
J. Mech. Sci. Technol.
,
23
(
2
), pp.
504
511
.10.1007/s12206-008-1102-5
7.
Tanie
,
H.
,
Chiwata
,
N.
,
Wakano
,
M.
,
Fujiyoshi
,
M.
, and
Fujiwara
,
S.
,
2011
, “
Development of Highly Reliable BGA and Flip-Chip Structure by Using Cu-Cored Solder Ball
,”
ASME Paper No. IPACK2011-52115
.10.1115/IPACK2011-52115
8.
Tanie
,
H.
,
Fujiwara
,
S.
,
Chiwata
,
N.
,
Fujiyoshi
,
M.
,
Shintani
,
H.
, and
Harubeppu
,
Y.
,
2012
, “
Electromigration Failure Analysis of Flip-Chip Solder Joint by Using Void Growth Simulation and Synchrotron Radiation X-Ray Microtomography
,”
Proceedings of the IEEE ECTC
,
Amsterdam, The Netherlands
, Sept. 17–20, pp.
750
755
.10.1109/ESTC.2012.6542076
9.
Sadasiva
,
S.
, and
Subbarayan
,
G.
,
2015
, “
Diffcode: A System for the Simulation of Diffusion Driven Phase Evolution in Solids
,”
ASME Paper No. IPACK2015-48655
.10.1115/IPACK2015-48655
10.
Ceric
,
H.
, and
Selberherr
,
S.
,
2015
, “
Compact Model for Solder Bump Electromigration Failure
,”
Proceedings of the IEEE IITC
,
Grenoble, France
, May 18–21, pp.
159
161
.10.1109/IITC-MAM.2015.7325651
11.
Xu
,
J.
,
Niu
,
Y.
,
Cain
,
S. R.
,
McCann
,
S.
,
Lee
,
H. H.
,
Ahmed
,
G. R.
, and
Park
,
S. B.
,
2018
, “
The Experimental and Numerical Study of Electromigration in 2.5D Packaging
,”
Proceedings of the IEEE ECTC
, San Diego, CA, May 29–June 1, pp.
483
489
.10.1109/ECTC.2018.00077
12.
Choi
,
U.-M.
,
Blaabjerg
,
F.
, and
Jorgensen
,
S.
,
2017
, “
Study on Effect of Junction Temperature Swing Duration on Lifetime of Transfer Molded Power IGBT Modules
,”
Proc. IEEE Trans. Power Electron.
,
32
(
8
), pp.
6434
6443
.10.1109/TPEL.2016.2618917
13.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Degradation Analysis of Electromigration in Power Module by Electro-Thermal-Stress Coupled Model
,”
Proceedings of the 34th JIEP Annual Meeting
,
Yokohama-shi, Kanagawa, Japan
, Mar. 3–5, Paper No. 3C5-01.
14.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Electromigration Analysis of Solder Joints for Power Modules Using an Electrical–Thermal-Stress Coupled Model
,”
ASME Paper No. IPACK2020-2556
.10.1115/IPACK2020-2556
15.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Evaluation of Electromigration for Solder Joints in Power Modules Using Coupled Electro-Thermal-Stress Analysis
,”
30th Proceedings of Microelectronics Symposium
,
Suita-shi, Osaka
, Japan, Sept. 17–18, Paper No. 2B3-1.
16.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Degradation Analysis of Electromigration by Electro-Thermal-Stress Coupled Model
,”
Proceedings of the 33th JIEP Annual Meeting
,
Bunkyo-ku, Tokyo, Japan
, Mar. 11–13, Paper No. 13C2-03.
17.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2019
, “
Evaluation of Electromigration in Power Module Using Coupled Electro-Thermal-Stress Analysis
,”
29th Proceedings of Microelectronics Symposium
,
Suita-shi, Osaka, Japan
, Sept. 12–13, Paper No. 2A3-03.
18.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2019
, “
Electromigration Analysis of Power Modules by Electrical–Thermal–Mechanical Coupled Model
,”
ASME Paper No. IMECE2019-10558
.10.1115/IMECE2019-10558
19.
Kato
,
M.
,
Omori
,
T.
,
Goryu
,
A.
,
Fumikura
,
T.
, and
Hirohata
,
K.
,
2020
, “
Evaluation of Electromigration in Bonding Wire for Power Module Using Coupled Electro-Thermal-Stress Analysis
,”
IEICE J. C
,
103
(
3
), pp.
129
136
.https://search.ieice.org/bin/summary.php?id=j103-c_3_129&category=C&year=2020&lang=2&abst=j
20.
Orio
,
R. L.
,
Ceric
,
H.
, and
Selberherr
,
S.
,
2010
, “
Physically Based Models of Electromigration: From Black's Equation to Modern TCAD Models
,”
Microelectron. Reliab.
,
50
(
6
), pp.
775
789
.10.1016/j.microrel.2010.01.007
21.
Basaran
,
C.
, and
Lin
,
M.
,
2007
, “
Electromigration Induced Strain Field Simulations for Nanoelectronics Lead-Free Solder Joints
,”
Int. J. Solids Struct.
,
44
(
14–15
), pp.
4909
4924
.10.1016/j.ijsolstr.2006.12.011
22.
Yao
,
W.
, and
Basaran
,
C.
,
2012
, “
Electromigration Analysis of Solder Joints Under ac Load: A Mean Time to Failure Model
,”
J. Appl. Phys.
,
111
(
6
), p.
063703
.10.1063/1.3693532
23.
The Japan Society of Mechanical Engineers
, ed.,
1986
,
JSME Data Book: Heat Transfer
, 4th ed.,
Maruzen Company, Limited
,
Tokyo, Japan
.
24.
Shinohe
,
T.
,
2004
, “
SiC Power Devices
,”
Toshiba Rev.
,
59
(
2
), pp.
49
53
.
25.
Gaston
,
D.
,
Newman
,
C.
,
Hansen
,
G.
, and
Lebrun-Grandié
,
D.
,
2009
, “
MOOSE: A Parallel Computational Framework for Coupled Systems of Nonlinear Equations
,”
Nucl. Eng. Des.
,
239
(
10
), pp.
1768
1778
.10.1016/j.nucengdes.2009.05.021
26.
Sukharev
,
V.
,
Zschech
,
E.
, and
Nix
,
W. D.
,
2007
, “
A Model for Electromigration-Induced Degradation Mechanisms in Dual-Inlaid Copper Interconnects: Effect of Microstructure
,”
J. Appl. Phys.
,
102
(
5
), p.
053505
.10.1063/1.2775538
27.
Blech
,
I. A.
,
1976
, “
Electro in Thin Aluminum Films on Titanium Nitride
,”
J. Appl. Phys.
,
47
(
4
), pp.
1203
1208
.10.1063/1.322842
You do not currently have access to this content.