Abstract

In electronic packaging, most researchers are mainly focused on the mechanical properties of Cu–Sn intermetallic compounds (IMCs) at room temperature; few studies have looked into the relationship between hardness, elastic modulus, and plasticity of IMCs and elevated temperature. The hardness, elastic modulus, and plasticity of Cu6Sn5 and Cu3Sn at 25–200 °C are investigated by the nanoindentation method. The results show that the hardnesses of Cu6Sn5 and Cu3Sn obey linear attenuation law with elevated temperature. The hardness of Cu6Sn5 is more sensitive to temperature than that of Cu3Sn. This is due to the fact that the melting point of Cu6Sn5 (415 °C) is lower than that of Cu3Sn (670 °C), Cu6Sn5 has a lower normalization temperature than that of Cu3Sn. The elastic modulus of Cu6Sn5 and Cu3Sn and temperature have a parabolic law at 25–200 °C. The elastic modulus of Cu6Sn5 is more sensitive to temperature. This is attributed to the fact that the lattice structure of Cu6Sn5 is changed from hexagonal lattice to monoclinic lattice, causing its volume to expand, thereby making it more sensitive to temperature. The plasticity factors of Cu6Sn5 and Cu3Sn meet the polynomial relationship with elevated temperature. The plasticity factors of Cu6Sn5 and Cu3Sn increase with increasing temperature, which will reduce the resistance to plastic deformation. This is attributed to the fact that the vacancy generated into the material is conducive to the dislocation movement, the dislocation movement will be more active so that the plasticity factors of Cu6Sn5 and Cu3Sn gradually increase.

References

1.
Biela
,
J.
,
Schweizer
,
M.
,
Waffler
,
S.
, and
Kolar
,
J. W.
,
2011
, “
SiC Versus Si-Evaluation of Potentials for Performance Improvement of Inverter and DC-DC Converter Systems by SiC Power Semiconductors
,”
IEEE Trans. Ind. Electron.
,
58
(
7
), pp.
2872
2882
.10.1109/TIE.2010.2072896
2.
Zhou
,
W. S.
,
Zhong
,
X. Q.
, and
Sheng
,
K.
,
2014
, “
High Temperature Stability and the Performance Degradation of SiC MOSFETs
,”
IEEE Trans. Power Electron.
,
29
(
5
), pp.
2329
2337
.10.1109/TPEL.2013.2283509
3.
Wang
,
R.
,
Boroyevich
,
D.
,
Ning
,
P.
,
Wang
,
Z.
,
Wang
,
F.
,
Mattavelli
,
P.
,
Ngo
,
K. D. T.
, and
Rajashekara
,
K.
,
2013
, “
A High-Temperature Sic Three-Phase AC-DC Converter Design for >100/Spl Deg/C Ambient Temperature
,”
IEEE Trans. Power Electron.
,
28
(
1
), pp.
555
572
.10.1109/TPEL.2012.2199131
4.
Liu
,
Y. C.
,
Teo
,
J. W. R.
,
Tung
,
S. K.
, and
Lam
,
S. K.
,
2008
, “
High-Temperature Creep and Hardness of Eutectic 80Au/20Sn Solder
,”
J. Alloy. Compd.
,
448
(
1–2
), pp.
340
343
.10.1016/j.jallcom.2006.12.142
5.
Yoon
,
J. W.
,
Chun
,
H. S.
, and
Jung
,
S. B.
,
2009
, “
Liquid-State and Solid-State Interfacial Reactions of Fluxless-Bonded Au-20Sn/ENIG Solder Joint
,”
J. Alloy. Compd.
,
469
(
1–2
), pp.
108
115
.10.1016/j.jallcom.2008.01.077
6.
Yu
,
F.
,
Cui
,
J. Z.
,
Zhou
,
Z. M.
,
Fang
,
K.
,
Johnson
,
R. W.
, and
Hamilton
,
M. C.
,
2017
, “
Reliability of Ag Sintering for Power Semiconductor Die Attach in High-Temperature Applications
,”
IEEE Trans. Power Electron.
,
32
(
9
), pp.
7083
7095
.10.1109/TPEL.2016.2631128
7.
Gillman
,
A.
,
Roelofs
,
M. J. G. H.
,
Matouš
,
K.
,
Kouznetsova
,
V. G.
,
Sluis
,
O. V. D.
, and
Maris
,
M. P. F. H. L. V.
,
2017
, “
Microstructure Statistics-Property Relations of Silver Particle-Based Interconnects
,”
Mater. Des.
,
118
, pp.
304
313
.10.1016/j.matdes.2017.01.005
8.
Park
,
M. S.
,
Gibbons
,
S. L.
, and
Arroyave
,
R.
,
2012
, “
Phase-Field Simulations of Intermetallic Compound Growth in Cu/Sn/Cu Sandwich Structure Under Transient Liquid Phase Bonding Conditions
,”
Acta Mater.
,
60
(
18
), pp.
6278
6287
.10.1016/j.actamat.2012.07.063
9.
Bosco
,
N. S.
, and
Zok
,
F. W.
,
2005
, “
Strength of Joints Produced by Transient Liquid Phase Bonding in the Cu-Sn System
,”
Acta Mater.
,
53
(
7
), pp.
2019
2027
.10.1016/j.actamat.2005.01.013
10.
Zheng
,
X. Y.
,
Lee
,
H.
,
Weisgraber
,
T. H.
,
Shusteff
,
M.
,
Deotte
,
J.
,
Duoss
,
E. B.
,
Kuntz
,
J. D.
,
Biener
,
M. M.
,
Ge
,
Q.
,
Jackson
,
J. A.
,
Kucheyev
,
S. O.
,
Fang
,
N. X.
, and
Spadaccini
,
C. M.
,
2014
, “
Ultralight, Ultrastiff Mechanical Metamaterials
,”
Science
,
344
(
6190
), pp.
1373
1377
.10.1126/science.1252291
11.
Espinosa
,
H. D.
,
Bernal
,
R. A.
, and
Minary
,
J. M.
,
2012
, “
A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires
,”
Adv. Mater.
,
24
(
34
), pp.
4656
4675
.10.1002/adma.201104810
12.
Li
,
L.
, and
Ortiz
,
C.
,
2014
, “
Pervasive Nanoscale Deformation Twinning as a Catalyst for Efficient Energy Dissipation in a Bioceramic Armour
,”
Nat. Mater.
,
13
(
5
), pp.
501
507
.10.1038/nmat3920
13.
Tsukamoto
,
H.
,
Dong
,
Z. G.
,
Huang
,
H.
,
Nishimura
,
T.
, and
Nogita
,
K.
,
2009
, “
Nanoindentation Characterization of Intermetallic Compounds Formed Between Sn-Cu(-Ni) Ball Grid Arrays and Cu Substrates
,”
Mater. Sci. Eng. B
,
164
(
1
), pp.
44
50
.10.1016/j.mseb.2009.06.013
14.
Deng
,
X.
,
Chawla
,
N.
,
Chawla
,
K. K.
,
Koopman
,
M.
, and
Chu
,
J. P.
,
2005
, “
Mechanical Behavior of Multilayered Nanoscale Metal-Ceramic Composites
,”
Adv. Eng. Mater.
,
7
(
12
), pp.
1099
1108
.10.1002/adem.200500161
15.
Shim
,
J. H.
,
Oh
,
C. S.
,
Lee
,
B. J.
, and
Lee
,
D. N.
,
1996
, “
Thermodynamic Assessment of the Cu-Sn System
,”
Z. Metallkd.
,
87
, pp.
205
212
. https://www.researchgate.net/publication/279898348_Thermodynamic_assessment_of_the_Cu-Sn_system
16.
Marques
,
V. M. F.
,
Johnston
,
C.
, and
Grant
,
P. S.
,
2013
, “
Nanomechanical Characterization of Sn-Ag-Cu/Cu Joints—Part 1: Young's Modulus, Hardness and Deformation Mechanisms as a Function of Temperature
,”
Acta Mater.
,
61
(
7
), pp.
2460
2470
.10.1016/j.actamat.2013.01.019
17.
Lucas
,
J. P.
,
Rhee
,
H.
,
Guo
,
F.
, and
Subramanian
,
K. N.
,
2003
, “
Mechanical Properties of Intermetallic Compounds Associated With Pb-Free Solder Joints Using Nanoindentation
,”
J. Electron. Mater.
,
32
(
12
), pp.
1375
1383
.10.1007/s11664-003-0104-4
18.
Yang
,
P. F.
,
Lai
,
Y. S.
,
Jian
,
S. R.
,
Chen
,
J.
, and
Chen
,
R. S.
,
2008
, “
Nanoindentation Identifications of Mechanical Properties of Cu6Sn5, Cu3Sn, and Ni3Sn4 Intermetallic Compounds Derived by Diffusion Couples
,”
Mater. Sci. Eng. A
,
485
(
1–2
), pp.
305
310
.10.1016/j.msea.2007.07.093
19.
Gao
,
F.
,
Nishikawa
,
H.
,
Takemoto
,
T.
, and
Qu
,
J. M.
,
2009
, “
Mechanical Properties Versus Temperature Relation of Individual Phases in Sn-3.0Ag-0.5Cu Lead-Free Solder Alloy
,”
Microelectron. Reliab.
,
49
(
3
), pp.
296
302
.10.1016/j.microrel.2008.10.010
20.
Wang
,
F. J.
,
Qian
,
Y. Y.
, and
Ma
,
X.
,
2005
, “
Measurement of Mechanical Properties of Sn-Ag-Cu Bulk Solder BGA Solder Joint Using Nanoindentation
,”
Acta Metall. Sin.
,
41
(
7
), pp.
775
779
.http://www.jcscp.org/EN/abstract/abstract4356.shtml
21.
Milman
,
Y. V.
,
Galanov
,
B. A.
, and
Chugunova
,
S. I.
,
1993
, “
Plasticity Characteristic Obtained Through Hardness Measurement
,”
Acta Mater.
,
41
(
9
), pp.
2523
2532
.10.1016/0956-7151(93)90122-9
22.
Milman
,
Y. V.
,
Chugunova
,
S. I.
, and
Goncharova
,
I. V.
,
2009
, “
Plasticity Determined by Indentation and Theoretical Plasticity of Materials
,”
Bull. Russ. Acad. Sci., Div. Chem. Sci.
,
73
, pp.
1215
1221
.10.3103/S1062873809090093
23.
Wheeler
,
J. M.
,
Armstrong
,
D. E. J.
,
Heinz
,
W.
, and
Schwaiger
,
R.
,
2015
, “
High Temperature Nanoindentation: The State of the Art and Future Challenges
,”
Curr. Opin. Solid State Mat. Sci.
,
19
(
6
), pp.
354
366
.10.1016/j.cossms.2015.02.002
24.
Pathak
,
S.
,
Stojakovic
,
D.
,
Doherty
,
R.
, and
Kalidindi
,
S. R.
,
2009
, “
Importance of Surface Preparation on the Nano-Indentation Stress-Strain Curves Measured in Metals
,”
J. Mater. Res.
,
24
(
3
), pp.
1142
1155
.10.1557/jmr.2009.0137
25.
Oliver
,
W. C.
, and
Pharr
,
G. M.
,
1992
, “
An Improved Technique for Determining Hardness and Elastic Modulus Using Load and Displacement Sensing Indentation Experiments
,”
J. Mater. Res.
,
7
(
6
), pp.
1564
1583
.10.1557/JMR.1992.1564
26.
Fields
,
R. J.
,
Low
,
S. R.
, and
Lucey
,
G. K.
,
1991
, “
Physical and Mechanical Properties of Intermetallic Compounds Commonly Found in Solder Joints
,”
Met. Sci. Join.
, 20(15), pp.
165
174
.https://www.metallurgy.nist.gov/mechanical_properties/solder_paper.html
27.
Lotfian
,
S.
,
Molina-Aldareguia
,
J. M.
,
Yazzie
,
K. E.
,
Yazzie
,
K. E.
,
Llorca
,
J.
, and
Chawla
,
N.
,
2013
, “
Mechanical Characterization of Lead-Free Sn-Ag-Cu Solder Joints by High-Temperature Nanoindentation
,”
J. Electron. Mater.
,
42
(
6
), pp.
1085
1091
.10.1007/s11664-013-2517-z
28.
Mu
,
D.
,
Huang
,
H.
,
McDonald
,
S. D.
, and
Nogita
,
K.
,
2013
, “
Creep and Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5 at Elevated Temperatures
,”
J. Electron. Mater.
,
42
(
2
), pp.
304
311
.10.1007/s11664-012-2227-y
29.
Mu
,
D.
,
Huang
,
H.
, and
Nogita
,
K.
,
2012
, “
Anisotropic Mechanical Properties of Cu6Sn5 and (Cu,Ni)6Sn5
,”
Mater. Lett.
,
86
, pp.
46
49
.10.1016/j.matlet.2012.07.018
30.
Song
,
J. M.
,
Huang
,
B. R.
,
Liu
,
C. Y.
,
Lai
,
Y. S.
,
Chiu
,
Y. T.
, and
Huang
,
T. W.
,
2012
, “
Nanomechanical Responses of Intermetallic Phase at the Solder Joint Interface-Crystal Orientation and Metallurgical Effects
,”
Mater. Sci. Eng. A
,
534
, pp.
53
59
.10.1016/j.msea.2011.11.037
31.
Song
,
J. M.
,
Su
,
C. W.
,
Lai
,
Y. S.
, and
Chiu
,
Y. T.
,
2010
, “
Time-Dependent Deformation Behavior of Interfacial Intermetallic Compound Layers in Electronic Solder Joints
,”
J. Mater. Res.
,
25
(
4
), pp.
629
632
.10.1557/JMR.2010.0081
32.
Rosenthal
,
Y.
,
Stern
,
A.
,
Cohen
,
S. R.
, and
Eliezer
,
D.
,
2010
, “
Nanoindentation Measurements and Mechanical Testing of As-Soldered and Aged Sn-0.7Cu Lead-Free Miniature Joints
,”
Mater. Sci. Eng. A
,
527
(
16–17
), pp.
4014
4020
.10.1016/j.msea.2010.03.006
33.
Xu
,
L.
, and
Pang
,
J. H. L.
,
2006
, “
Nano-Indentation Characterization of Ni-Cu-Sn IMC Layer Subject to Isothermal Aging
,”
Thin Solid Films
,
504
(
1–2
), pp.
362
366
.10.1016/j.tsf.2005.09.056
34.
Zhou
,
W.
,
Liu
,
L. J.
, and
Wu
,
P.
,
2010
, “
Structural, Electronic and Thermo-Elastic Properties of Cu6Sn5 and Cu5Zn8 Intermetallic Compounds: First-Principles Investigation
,”
Intermetallics
,
18
(
5
), pp.
922
928
.10.1016/j.intermet.2009.12.032
35.
Chen
,
J.
,
Lai
,
Y. S.
,
Yang
,
P. F.
,
Ren
,
C. Y.
, and
Huang
,
D. J.
,
2009
, “
Structural and Elastic Properties of Cu6Sn5 and Cu3Sn From First-Principles Calculations
,”
J. Mater. Res.
,
24
(
7
), pp.
2361
2372
.10.1557/jmr.2009.0273
36.
Yang
,
X. X.
,
Xiao
,
G. S.
,
Yuan
,
G. Z.
,
Li
,
Z. G.
, and
Shu
,
X. F.
,
2013
, “
Nanoindentation Identifications of Mechanical Properties of Cu6Sn5 Intermetallic Compounds Derived by Lead-Free Solder Joints
,”
Rare Met. Mat. Eng.
,
2
, p.
021
.
37.
Hertzberg
,
R. W.
,
1989
,
Deformation and Fracture Mechanics of Engineering Materials
,
Wiley
,
New York
.
38.
Ma
,
H. T.
, and
Suhling
,
J. C.
,
2009
, “
A Review of Mechanical Properties of Lead-Free Solders for Electronic Packaging
,”
J. Mater. Sci.
,
44
(
5
), pp.
1141
1158
.10.1007/s10853-008-3125-9
39.
Laurila
,
T.
,
Vuorinen
,
V.
, and
Kivilahti
,
J. K.
,
2005
, “
Interfacial Reactions Between Lead-Free Solders and Common Base Materials
,”
Mater. Sci. Eng. R: Rep.
,
49
(
1–2
), pp.
1
60
.10.1016/j.mser.2005.03.001
40.
Larsson
,
A. K.
,
Stenberg
,
L.
, and
Lidin
,
S.
,
1994
, “
The Superstructure of Domain-Twinned η'-Cu6Sn5
,”
Acta Crystallogr., Sect. B: Struct. Sci.
,
50
(
6
), pp.
636
643
.10.1107/S0108768194004052
41.
Hwang
,
C. W.
,
Suganuma
,
K.
,
Lee
,
J. G.
, and
Mori
,
H.
,
2003
, “
Interface Microstructure Between Fe-42Ni Alloy and Pure Sn
,”
J. Mater. Res.
,
18
(
5
), pp.
1202
1210
.10.1557/JMR.2003.0165
42.
Ghosh
,
G.
, and
Asta
,
M.
,
2005
, “
Phase Stability, Phase Transformations, and Elastic Properties of Cu6Sn5: Ab Initio Calculations and Experimental Results
,”
J. Mater. Res.
,
20
(
11
), pp.
3102
3117
.10.1557/JMR.2005.0371
You do not currently have access to this content.