In this paper, thermal management in GaN (gallium nitride) based microelectronic devices is addressed using microfluidic cooling. Numerical modeling is done using finite element analysis (FEA), and the results for temperature distribution are presented for a system comprising multiple cooling channels underneath GaN high-electron mobility transistors (HEMTs). The thermal stack modeled is compatible for heterogeneous integration with conventional silicon-based CMOS devices. Parametric studies for cooling performance are done over a range of geometric and flow factors to determine the optimal cooling configuration within the specified constraints. A power dissipation of 2–4 W/mm is modeled along each HEMT finger in the proposed configuration. The cooling arrangements modeled here hold promising potential for implementation in high-performance radio-frequency (RF) systems for power amplifiers, transmission lines, and other applications in defense and military.

References

1.
Calame
,
J. P.
,
Myers
,
R. E.
,
Binari
,
S. C.
,
Wood
,
F. N.
, and
Garven
,
M.
,
2007
, “
Experimental Investigation of Microchannel Coolers for the High Heat Flux Thermal Management of GaN-on-SiC Semiconductor Devices
,”
Int. J. Heat Mass Transfer
,
50
(
23–24
), pp.
4767
4779
.
2.
Lee
,
H.
,
Won
,
Y.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2015
, “
Computational Modeling of Extreme Heat Flux Microcooler for GaN-Based HEMT
,”
ASME
Paper No. IPACK2015-48670.
3.
Lee
,
H.
,
Agonafer
,
D. D.
,
Won
,
Y.
,
Houshmand
,
F.
,
Gorle
,
C.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2016
, “
Thermal Modeling of Extreme Heat Flux Microchannel Coolers for GaN-on-SiC Semiconductor Devices
,”
ASME J. Electron. Packag.
,
138
(
1
), p.
010907
.
4.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Sivananthan
,
A.
,
2015
, “
Near-Junction Microfluidic Thermal Management of RF Power Amplifiers
,”
IEEE International Conference on Microwaves, Communications, Antennas and Electronic Systems
(
COMCAS
), Tel-Aviv, Israel, Nov. 2–4, pp.
1
8
.
5.
Matin
,
K.
,
Bar-Cohen
,
A.
, and
Maurer
,
J. J.
,
2015
, “
Modeling and Simulation Challenges in Embedded Two Phase Cooling: DARPA's ICECool Program
,”
ASME
Paper No. IPACK2015-48334.
6.
Bar-Cohen
,
A.
,
Maurer
,
J. J.
, and
Sivananthan
,
A.
,
2016
, “
Near-Junction Microfluidic Cooling for Wide Bandgap Devices
,”
MRS Adv.
,
1
(
2
), pp.
181
195
.
7.
Campbell
,
G.
,
Eppich
,
H.
,
Lang
,
K.
,
Creamer
,
C.
,
Yurovchak
,
T.
,
Chu
,
K.
,
Kassinos
,
A.
,
Ohadi
,
M.
,
Shooshtari
,
A.
, and
Dessiatoun
,
S.
,
2015
, “
Advanced Cooling Designs for GaN-on-Diamond MMICs
,”
ASME
Paper No. IPACK2015-48429.
8.
DARPA
,
2012
, “
Intrachip/Interchip Enhanced Cooling Fundamentals (ICECool Fundamentals)
,” DARPA Broad Agency Announcement,
Paper No. DARPA-BAA-12-50
.https://connect.innovateuk.org/documents/3158891/3675165/DARPA-BAA-12-50.pdf/4536d6b3-3a27-442b-8fc7-006da2aab957
9.
Tsurumi
,
N.
,
Ueno
,
H.
,
Murata
,
T.
,
Ishida
,
H.
,
Uemoto
,
Y.
,
Ueda
,
T.
,
Inoue
,
K.
, and
Tanaka
,
T.
,
2010
, “
AlN Passivation Over AlGaN/GaN HFETs for Surface Heat Spreading
,”
IEEE Trans. Electron Devices
,
57
(
5
), pp.
980
985
.
10.
Tadjer
,
M. J.
,
Anderson
,
T. J.
,
Hobart
,
K. D.
,
Feygelson
,
T. I.
,
Caldwell
,
J. D.
,
Eddy
,
C. R.
,
Kub
,
F. J.
,
Butler
,
J. E.
,
Pate
,
B.
, and
Melngailis
,
J.
,
2012
, “
Reduced Self-Heating in AlGaN/GaN HEMTs Using Nanocrystalline Diamond Heat-Spreading Films
,”
IEEE Electron Device Lett.
,
33
(
1
), pp.
23
25
.
11.
Yan
,
Z.
,
Liu
,
G.
,
Khan
,
J. M.
, and
Balandin
,
A. A.
,
2012
, “
Graphene Quilts for Thermal Management of High-Power GaN Transistors
,”
Nat. Commun.
,
3
(
827
), pp.
1
8
.
12.
Babić
,
D. I.
,
Diduck
,
Q.
,
Yenigalla
,
P.
,
Schreiber
,
A.
,
Francis
,
D.
,
Faili
,
F.
,
Ejeckam
,
F.
,
Felbinger
,
J. G.
, and
Eastman
,
L. F.
,
2010
, “
GaN-on-Diamond Field-Effect Transistors: From Wafers to Amplifier Modules
,”
MIPRO, 2010 Proceedings of the 33rd International Convention
, Opatija, Croatia, May 24–28, pp.
60
66
.
13.
Felbinger
,
J. G.
,
Chandra
,
M. V. S.
,
Sun
,
Y.
,
Eastman
,
L. F.
,
Wasserbauer
,
J.
,
Faili
,
F.
,
Babic
,
D.
,
Francis
,
D.
, and
Ejeckam
,
F.
,
2007
, “
Comparison of GaN HEMTs on Diamond and SiC Substrates
,”
IEEE Electron Device Lett.
,
28
(
11
), pp.
948
950
.
14.
Chu
,
K. K.
,
Chao
,
P. C.
,
Diaz
,
J. A.
,
Yurovchak
,
T.
,
Schmanski
,
B. J.
,
Creamer
,
C. T.
,
Sweetland
,
S.
,
Kallaher
,
R. L.
,
McGray
,
C.
,
Via
,
G. D.
, and
Blevins
,
J. D.
,
2015
, “
High-Performance GaN-on-Diamond HEMTs Fabricated by Low-Temperature Device Transfer Process
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), New Orleans, LA, Oct. 11–14, pp.
1
4
.
15.
Pengelly
,
R. S.
,
Wood
,
S. M.
,
Milligan
,
J. W.
,
Sheppard
,
S. T.
, and
Pribble
,
W. L.
,
2012
, “
A Review of GaN on SiC High Electron-Mobility Power Transistors and MMICs
,”
IEEE Trans. Microwave Theory Tech.
,
60
(
6
), pp.
1764
1783
.
16.
del Alamo
,
J. A.
, and
Joh
,
J.
,
2009
, “
GaN HEMT Reliability
,”
Microelectron. Reliab.
,
49
(
9
), pp.
1200
1206
.
17.
Jimenez
,
J. L.
, and
Chowdhury
,
U.
,
2008
, “
X-Band GaN FET Reliability
,”
IEEE International Reliability Physics Symposium
, Phoenix, AZ, Apr. 27–May 1, pp. 429–435.
18.
Rosker
,
M.
,
Bozada
,
C.
,
Dietrich
,
H.
,
Hung
,
H. A.
,
Via
,
D.
,
Binari
,
S.
,
Vivierios
,
E.
,
Cohen
,
E.
, and
Hodiak
,
J.
,
2009
, “
The DARPA Wide Band Gap Semiconductors for RF Applications (WBGS-RF) Program: Phase II Results
,” International Conference on Compound Semiconductor Manufacturing Technology (
CS MANTECH
), Tampa, FL, May 18–21.http://www.csmantech.org/Digests/2009/2009%20Papers/8.2.pdf
19.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2015
, “
Fundamental Cooling Limits for High Power Density GaN Electronics
,”
IEEE Trans. Compon., Packag., Manuf. Technol.
,
5
(6), pp.
737
744
.
20.
Cho
,
J.
,
Bozorg-Grayeli
,
E.
,
Altman
,
D. H.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2012
, “
Low Thermal Resistances at GaN-SiC Interfaces for HEMT Technology
,”
IEEE Electron Device Lett.
,
33
(
3
), pp.
378
380
.
21.
Won
,
Y.
,
Cho
,
J.
,
Agonafer
,
D.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2013
, “
Cooling Limits for GaN HEMT Technology
,”
IEEE Compound Semiconductor Integrated Circuit Symposium
(
CSICS
), Monterey, CA, Oct. 13–16, pp.
1
5
.
22.
Ng
,
E. J.
,
Lee
,
H. K.
,
Ahn
,
C. H.
,
Melamud
,
R.
, and
Kenny
,
T. W.
,
2013
, “
Stability of Silicon Microelectromechanical Systems Resonant Thermometers
,”
IEEE Sens. J.
,
13
(
3
), pp.
987
993
.
23.
Graham
,
A. B.
,
Messana
,
M. W.
,
Hartwell
,
P. G.
,
Provine
,
J.
,
Yoneoka
,
S.
,
Melamud
,
R.
,
Kim
,
B.
,
Howe
,
R. T.
, and
Kenny
,
T. W.
,
2010
, “
A Method for Wafer-Scale Encapsulation of Large Lateral Deflection MEMS Devices
,”
J. Microelectromech. Syst.
,
19
(
1
), pp.
28
37
.
24.
Roozeboom
,
C. L.
,
Hill
,
B. E.
,
Hong
,
V. A.
,
Ahn
,
C. H.
,
Ng
,
E. J.
,
Yang
,
Y.
,
Kenny
,
T. W.
,
Hopcroft
,
M. A.
, and
Pruitt
,
B. L.
,
2014
, “
Multifunctional Integrated Sensors for Multiparameter Monitoring Applications
,”
J. Microelectromech. Syst.
,
24
(
4
), pp.
810
821
.
25.
Kazior
,
T. E.
,
Chelakara
,
R.
,
Hoke
,
W.
,
Bettencourt
,
J.
,
Palacios
,
T.
, and
Lee
,
H. S.
,
2011
, “
High Performance Mixed Signal and RF Circuits Enabled by the Direct Monolithic Heterogeneous Integration of GaN HEMTs and Si CMOS on a Silicon Substrate
,”
IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS)
, Waikoloa, HI, Oct. 16–19, pp.
1
4
.
26.
Hoke
,
W. E.
,
Chelakara
,
R. V.
,
Bettencourt
,
J. P.
,
Kazior
,
T. E.
,
LaRoche
,
J. R.
,
Kennedy
,
T. D.
,
Mosca
,
J. J.
,
Torabi
,
A.
,
Kerr
,
A. J.
,
Lee
,
H.-S.
, and
Palacios
,
T.
,
2012
, “
Monolithic Integration of Silicon CMOS and GaN Transistors in a Current Mirror Circuit
,”
J. Vac. Sci. Technol. B
,
30
(
2
), p.
02B101
.
27.
Lee
,
H. S.
,
Li
,
Z.
,
Sun
,
M.
,
Ryu
,
K.
, and
Palacios
,
T.
,
2013
, “
Hybrid Wafer Bonding and Heterogeneous Integration of GaN HEMTs and Si (100) MOSFETs
,”
ECS Trans.
,
50
(
9
), pp.
1055
1061
.
28.
Popa
,
L. C.
, and
Weinstein
,
D.
,
2014
, “
1 GHz GaN Resonant Body Transistors With Enhanced Off-Resonance Rejection
,” Solid-State Sensors, Actuators, and Microsystems Workshop, Hilton Head Island, SC, June 8–12, pp. 269–272
29.
Popa
,
L. C.
, and
Weinstein
,
D.
,
2014
, “
L-Band Lamb Mode Resonators in Gallium Nitride MMIC Technology
,”
IEEE International Frequency Control Symposium
(
FCS 2014
), Taipei, Taiwan, May 19–22, pp.
1
4
.
30.
Popa
,
L. C.
, and
Weinstein
,
D.
,
2013
, “
2DEG Electrodes for Piezoelectric Transduction of AlGaN/GaN MEMS Resonators
,” IEEE European Frequency and Time Forum & International Frequency Control Symposium (
EFTF/IFC
), Prague, Czech Republic, July 21–25, pp. 922–925.
31.
Popa
,
L. C.
, and
Weinstein
,
D.
,
2013
, “
Switchable Piezoelectric Transduction in AlGaN/GaN MEMS Resonators
,”
IEEE International Conference on Solid-State Sensors, Actuators and Microsystems
(
Transducers 2013
), Barcelona, Spain, June 16–20, pp. 2461–2464.
32.
Ritchey
,
S. N.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Effects of Non-Uniform Heating on the Location and Magnitude of Critical Heat Flux in a Microchannel Heat Sink
,”
Int. J. Micro-Nano Scale Transp.
,
5
(
3
), pp.
95
108
.
33.
Ritchey
,
S. N.
,
Weibel
,
J. A.
, and
Garimella
,
S. V.
,
2014
, “
Local Measurement of Flow Boiling Heat Transfer in an Array of Non-Uniformly Heated Microchannels
,”
Int. J. Heat Mass Transf.
,
71
, pp.
206
216
.
34.
Rajasingam
,
S.
,
Pomeroy
,
J. W.
,
Kuball
,
M.
,
Uren
,
M. J.
,
Martin
,
T.
,
Herbert
,
D. C.
,
Hilton
,
K. P.
, and
Balmer
,
R. S.
,
2004
, “
Micro-Raman Temperature Measurements for Electric Field Assessment in Active AlGaN-GaN HFETs
,”
IEEE Electron Device Lett.
,
25
(
7
), pp.
456
458
.
35.
Hosch
,
M.
,
Pomeroy
,
J. W.
,
Sarua
,
A.
,
Kuball
,
M.
,
Jung
,
H.
, and
Schumacher
,
H.
,
2009
, “
Field Dependent Self-Heating Effects in High-Power AlGaN/GaN HEMTs
,” International Conference on Compound Semiconductor Manufacturing Technology (
CS MANTECH
), Tampa, FL, May 18–21.http://www.csmantech.org/Digests/20]09/2009%20Papers/8.2.pdf
36.
Heller
,
E. R.
, and
Crespo
,
A.
,
2007
, “
Electro-Thermal Modeling of Multifinger AlGaN/GaN HEMT Device Operation Including Thermal Substrate Effects
,”
Microelectron. Reliab.
,
48
(
1
), pp.
45
50
.
37.
Darwish
,
A. M.
,
Bayba
,
A. J.
, and
Hung
,
H. A.
,
2004
, “
Thermal Resistance Calculation of AlGaN-GaN Devices
,”
IEEE Trans. Microwave Theory Tech.
,
52
(
11
), pp.
2611
2620
.
38.
Cho
,
J.
,
Li
,
Y.
,
Altman
,
D. H.
,
Hoke
,
W. E.
,
Asheghi
,
M.
, and
Goodson
,
K. E.
,
2012
, “
Temperature Dependent Thermal Resistances at GaN-Substrate Interfaces in GaN Composite Substrates
,”
13th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
(
ITHERM
), San Diego, CA, May 30–June 1, pp.
435
439
.
You do not currently have access to this content.