Three-dimensional (3D) chip stacking architecture is expected to reduce form factor, improve performance, and decrease power consumption in future microelectronics. High power density and nonuniform power distribution in stacked dies are expected to bring significant thermal challenges for 3D packages due to localized hot spots. Embedded thermoelectric coolers (TECs) have potential to provide reliable and localized cooling at these hot spots. In this work, peak package temperature or active cooling per power consumption of TECs are optimized, considering applied current and thickness of TECs as parameters, for a 3D electronic package with two stacked dies. Each die has two hot spots and one TEC is paired with each hot spot. Three different optimization methods are considered in order to ensure a robust solution. The optimization suggests that both the peak temperature in package and energy efficiency of the cooling system can be significantly improved through the optimization of TECs. TECs are also compared against a configuration where they are replaced by copper blocks or thermal vias. A total of 4.7 °C of additional localized cooling is observed using TECs which is beyond what is achievable with copper vias in place of the TECs. The study also suggests that it is better to use TECs to cool only the hottest portions of the package to avoid introducing additional thermal resistance and Joule heating in the package.

References

1.
Black
,
B.
,
Annavaram
,
M.
,
Brekelbaum
,
N.
,
DeVale
,
J.
,
Jiang
,
L.
,
Loh
,
G. H.
,
McCauley
,
D.
,
Morrow
,
P.
,
Nelson
,
D. W.
,
Pantuso
,
N.
,
Reed
,
P.
,
Rupley
,
J.
,
Shankar
,
S.
,
Shen
,
J.
, and
Webb
,
C.
,
2006
, “
Die Stacking (3D) Microarchitecture
,”
39th IEEE/ACM International Symposium on Microarchitecture
(
MICRO-39
), Orlando, FL, Dec. 9–13, pp. 469–479. 10.1109/MICRO.2006.18
2.
Jain
,
A.
,
Jones
,
R. E.
,
Chatterjee
,
R.
, and
Pozder
,
S.
,
2010
, “
Analytical and Numerical Modeling of the Thermal Performance of Three-Dimensional Integrated Circuits
,”
IEEE Trans. Compon. Packag. Technol.
,
33
(1), pp.
56
63
.10.1109/TCAPT.2009.2020916
3.
ITRS
,
2011
,“
The International Technology Roadmap for Semiconductors
,”
System Drivers
, Semiconductor Industry Association (SIA), Washington, DC, pp.
1
29
.
4.
ITRS
,
2009
, “
The International Technology Roadmap for Semiconductors
,”
Assembly and Packaging
, Semiconductor Industry Association (SIA), Washington, DC, pp.
1
62
.
5.
Hamann
,
H. F.
,
Weger
,
A.
,
Lacey
,
J. A.
,
Hu
,
Z.
,
Bose
,
P.
,
Cohen
,
E.
, and
Wakil
,
J.
,
2007
, “
Hotspot-Limited Microprocessors: Direct Temperature and Power Distribution Measurements
,”
IEEE J. Solid-State Circuits
,
42
(1), pp.
56
65
.10.1109/JSSC.2006.885064
6.
Mahajan
,
R.
,
Chiu
,
C.-P.
, and
Chrysler
,
G.
,
2006
, “
Cooling a Microprocessor Chip
,”
Proc. IEEE
,
94
(8), pp.
1476
1486
.10.1109/JPROC.2006.879800
7.
Mudawar
,
I.
,
2001
, “
Assessment of High-Heat-Flux Thermal Management Schemes
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(2), pp.
122
141
.10.1109/6144.926375
8.
Snyder
,
G. J.
, and
Toberer
,
E. S.
,
2008
, “
Complex Thermoelectric Materials
,”
Nature Mater.
,
7
(2), pp.
105
114
.10.1038/nmat2090
9.
Sharp
,
J.
,
Bierschenk
,
J.
, and
Lyon
,
J. H. B.
,
2006
, “
Overview of Solid-State Thermoelectric Refrigerators and Possible Applications to On-Chip Thermal Management
,”
Proc. IEEE
,
94
(8), pp.
1602
1612
.10.1109/JPROC.2006.879795
10.
Snyder
,
G. J.
,
Soto
,
M.
,
Alley
,
R.
,
Koester
,
D.
, and
Connor
,
B.
,
2006
, “
Hot Spot Cooling Using Embedded Thermoelectric Coolers
,”
22nd IEEE Semiconductor Thermal Measurement and Management Symposium
(
SEMI-THERM
), Dallas, TX, Mar. 14–16, pp.
135
143
.10.1109/STHERM.2006.1625219
11.
Yang
,
B.
,
Wang
,
P.
, and
Bar-Cohen
,
A.
,
2007
, “
Mini-Contact Enhanced Thermoelectric Cooling of Hot Spots in High Power Devices
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(3), pp.
432
438
.10.1109/TCAPT.2007.898744
12.
Chowdhury
,
I.
,
Prasher
,
R.
,
Lofgreen
,
K.
,
Chrysler
,
G.
,
Narasimhan
,
S.
,
Mahajan
,
R.
,
Koester
,
D.
,
Alley
,
R.
, and
Venkatasubramanian
,
R.
,
2009
, “
On-Chip Cooling by Superlattice-Based Thin-Film Thermoelectrics
,”
Nat. Nanotechnol.
,
4
(4), pp.
235
238
.10.1038/nnano.2008.417
13.
Sahu
,
V.
,
Joshi
,
Y. K.
, and
Fedorov
,
A. G.
,
2010
, “
Experimental Investigation of Hotspot Removal Using Superlattice Cooler
,” 12th IEEE Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems (
ITherm
),
Las Vegas, NV
, June 2–5. 10.1109/ITHERM.2010.5501255
14.
Bierschenk
,
J.
, and
Johnson
,
D.
,
2004
, “
Extending the Limits of Air Cooling With Thermoelectrically Enhanced Heat Sinks
,” 9th Intersociety Conference on Thermal and Thermochemical Phenomena in Electronic Systems (
ITHERM'04
), Las Vegas, June 1–4, pp.
679
684
.10.1109/ITHERM.2004.1319241
15.
Chu
,
R. C.
, and
Simons
,
R. E.
,
1999
, “
Application of Thermoelectrics to Cooling Electronics: Review and Prospects
,”
18th International Conference on Thermoelectrics
, Baltimore, MD, Aug. 29–Sept. 2, pp.
270
279
.10.1109/ICT.1999.843385
16.
Hodes
,
M.
,
2012
, “
Optimal Design of Thermoelectric Refrigerators Embedded in a Thermal Resistance Network
,”
IEEE Trans. Compon. Packag. Technol.
,
2
(3), pp.
483
495
.10.1109/TCPMT.2011.2166762
17.
Taylor
,
R. A.
, and
Solbrekken
,
G. L.
,
2008
, “
Comprehensive System-Level Optimization of Thermoelectric Devices for Electronic Cooling Applications
,”
IEEE Trans. Compon. Packag. Technol.
,
31
(1), pp.
23
31
.10.1109/TCAPT.2007.906333
18.
Taylor
,
R. A.
, and
Solbrekken
,
G. L.
,
2006
, “
Optimization of Thermoelectric Cooling for Microelectronics
,”
10th Intersociety Conference on Thermal and Thermomechanical Phenomena in Electronic Systems
, (
ITHERM'06
), San Diego, CA, May 30-June 2, pp.
483
489
.10.1109/ITHERM.2006.1645383
19.
Xuan
,
X. C.
,
2002
, “
Optimum Design of a Thermoelectric Device
,”
Semicond. Sci. Technol.
,
17
(2), pp.
114
119
.10.1088/0268-1242/17/2/304
20.
Pettes
,
A. M.
,
Hodes
,
M. S.
, and
Goodson
,
K. E.
,
2009
, “
Optimized Thermoelectric Refrigeration in the Presence of Thermal Boundary Resistance
,”
IEEE Trans. Adv. Packag.
,
32
(2), pp.
423
430
.10.1109/TADVP.2008.924221
21.
Hodes
,
M.
, “
Optimal Pellet Geometries for Thermoelectric Refrigeration
,”
IEEE Trans. Compon. Packag. Technol.
,
30
(1), pp.
50
58
.10.1109/TCAPT.2007.892068
22.
Solbrekken
,
G. L.
,
2005
, “
Peltier Enhanced Heat Spreading for Localized Hot Spot Thermal Management
,”
ASME
Paper No. IPACK2005-73471. 10.1115/IPACK2005-73471
23.
Li
,
S.-L.
,
Chung-Yen
,
H.
,
Chun-Kai
,
L.
,
Ming-Ji
,
D.
,
Chieh
,
C. H.
, and
Ra-min
,
T.
,
2011
, “
Hot Spot Cooling in 3DIC Package Utilizing Embedded Thermoelectric Cooler Combined With Silicon Interposer
,”
6th International Microsystems, Packaging, Assembly and Circuits Technology Conference
(
IMPACT
), Taipei, Oct. 19–21, pp.
470
473
.10.1109/IMPACT.2011.6117280
24.
Redmond
,
M.
,
Manickaraj
,
K.
,
Sullivan
,
O.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2013
, “
Hotspot Cooling in Stacked Chips Using Thermoelectric Coolers
,”
IEEE Trans. Compon. Packag. Manuf. Technol.
,
3
(5), pp.
759
767
.10.1109/TCPMT.2012.2226721
25.
Knickerbocker
,
J. U.
,
Andry
,
P. S.
,
Dang
,
B.
,
Horton
,
R. R.
,
Interrante
,
M. J.
,
Patel
,
C. S.
,
Polastre
,
R. J.
,
Sakuma
,
K.
,
Sirdeshmukh
,
R.
,
Sprogis
,
E. J.
,
Sri-Jayantha
,
S. M.
,
Stephens
,
A. M.
,
Topol
,
A. W.
,
Tsang
,
C. K.
,
Webb
,
B. C.
, and
Wright
,
S. L.
,
2008
, “
Three-Dimensional Silicon Integration
,”
IBM J. Res. Dev.
,
52
(6), pp.
553
569
.10.1147/JRD.2008.5388564
26.
Dang
,
B.
,
Wright
,
S. L.
,
Andry
,
P. S.
,
Sprogis
,
E. J.
,
Tsang
,
C. K.
,
Interrante
,
M. J.
,
Webb
,
B. C.
,
Polastre
,
R. J.
,
Horton
,
R. R.
,
Patel
,
C. S.
,
Sharma
,
A.
,
Zheng
,
J.
,
Sakuma
,
K.
, and
Knickerbocker
,
J. U.
,
2008
, “
3D Chip Stacking With C4 Technology
,”
IBM J. Res. Dev.
,
52
(6), pp.
599
609
.10.1147/JRD.2008.5388560
27.
Bottner
,
H.
,
Nurus
,
J.
,
Gavrikov
,
A.
,
Kuhner
,
G.
,
Jagle
,
M.
,
Kunzel
,
C.
,
Eberhard
,
D.
,
Plescher
,
G.
,
Schubert
,
A.
, and
Schlereth
,
K.-H.
,
2004
, “
New Thermoelectric Components Using Microsystem Technologies
,”
J. Microelectromech. Syst.
,
13
(3), pp.
414
420
.10.1109/JMEMS.2004.828740
28.
Huang
,
I.-Y.
,
Lin
,
J.-C.
,
She
,
K.-D.
,
Li
,
M.-C.
,
Chen
,
J.-H.
, and
Kuo
,
J.-S.
,
2008
, “
Development of Low-Cost Micro-Thermoelectric Coolers Utilizing MEMS Technology
,”
Sens. Actuators A
,
148
(1), pp.
176
185
.10.1016/j.sna.2008.07.017
29.
Fan
,
X.
,
Zeng
,
G.
,
Croke
,
E.
,
LaBounty
,
C.
,
Ahn
,
C. C.
,
Vashaee
,
D.
,
Shakouri
,
A.
, and
Bowers
,
J. E.
,
2001
, “
High Cooling Power Density SiGe/Si Microcoolers
,”
Electron. Lett.
,
37
(2), pp.
126
127
.10.1049/el:20010096
30.
Fan
,
X.
,
Zeng
,
G.
,
LaBounty
,
C.
,
Bowers
,
J. E.
,
Croke
,
E.
,
Ahn
,
C. C.
,
Majumdar
,
S. H. A. A.
, and
Shakouri
,
A.
,
2001
, “
SiGeC/Si Superlattice Microcoolers
,”
Appl. Phys. Lett.
,
78
(11), pp.
1580
1582
.10.1063/1.1356455
31.
Snyder
,
G. J.
,
Lim
,
J. R.
,
Huang
,
C.-K.
, and
Fleurial
,
J.-P.
,
2003
, “
Thermoelectric Microdevice Fabricated by a MEMS-Like Electrochemical Process
,”
Nature Mater.
,
2
(8), pp.
528
531
.10.1038/nmat943
32.
Zhang
,
Y.
,
Zeng
,
G.
, and
Shakouri
,
A.
,
2006
, “
Silicon Microrefrigerator
,”
IEEE Trans. Compon. Packag. Technol.
,
29
(3), pp.
570
576
.10.1109/TCAPT.2006.880508
33.
Gupta
,
M. P.
,
Sayer
,
M.-H.
,
Mukhopadhyay
,
S.
, and
Kumar
,
S.
,
2011
, “
Ultrathin Thermoelectric Devices for On-Chip Peltier Cooling
,”
IEEE Trans. Compon. Packag. Technol.
,
1
(9), pp.
1395
1405
.10.1109/TCPMT.2011.2159304
34.
Nesterov
,
Y.
,
2003
,
Introductory Lectures on Convex Optimization: A Basic Course (Applied Optimization)
,
Kluwer Academic Publishers
,
Norwell, MA
.
35.
Luus
,
R.
, and
Jaakola
,
T. H. I.
,
1973
, “
Optimization by Direct Search and Systematic Reduction of the Size of Search Region
,”
Am. Inst. Chem. Eng. J.
,
19
(4), pp.
760
766
.10.1002/aic.690190413
You do not currently have access to this content.