Currently, the thermal management of microelectromechanical systems (MEMS) has become a challenge. In the present research, a micro pulsating heat pipe (MPHP) with a hydraulic diameter of 508 μm, is experimented. The thermal performance of the MPHP in both the transient and steady conditions, the effects of the working fluid (water, silver nanofluid, and ferrofluid), heating power (4, 8, 12, 16, 20, 24, and 28 W), charging ratio (20, 40, 60, and 80%), inclination angle (0 deg, 25 deg, 45 deg, 75 deg, and 90 deg relative to horizontal axis), and the application of magnetic field, are investigated and thoroughly discussed. The experimental results show that the optimum charging ratio for water is 40%, while this optimum for nanofluids is 60%. In most of situations, the nanofluid charged MPHPs have a lower thermal resistance relative to the water charged ones. For ferrofluid charged MPHP, the application of a magnetic field substantially reduces the thermal resistance. This study proposes an outstanding technique for the thermal management of electronics.

References

1.
Ma
,
H. B.
,
Wilson
,
C.
,
Yu
,
Q.
,
Park
,
K.
,
Choi
,
U. S.
, and
Tirumala
,
M.
,
2006
, “
An Experimental Investigation of Heat Transport Capability in a Nanofluid Oscillating Heat Pipe
,”
ASME J. Heat Transfer
,
128
(
11
), pp.
1213
1216
.10.1115/1.2352789
2.
Small
,
E.
,
Sadeghipour
,
S. M.
, and
Asheghi
,
M.
,
2006
, “
Heat Sinks With Enhanced Heat Transfer Capability for Electronic Cooling Applications
,”
ASME J. Electron. Packag.
,
128
(
3
), pp.
285
290
.10.1115/1.2229230
3.
Kenny
,
T. W.
,
Goodson
,
K. E.
,
Santiago
,
J. G.
,
Wang
,
E. N.
,
Koo
,
J. M.
,
Jiang
,
L.
,
Pop
,
E.
,
Sinha
,
S.
,
Zhang
,
L.
,
Fogg
,
D.
,
Yao
,
S.
,
Flynn
,
R.
,
Cheng
,
C. H.
, and
Hidrovo
,
C. H.
,
2005
, “
Advanced Cooling Technologies for Microprocessors
,”
Int. J. High Speed Electron. Syst.
,
16
(
1
), pp.
301
313
.10.1142/S0129156406003655
4.
Li
,
P.
and
Liu
,
J.
,
2011
, “
Self-Driven Electronic Cooling Based on Thermosyphon Effect of Room Temperature Liquid Metal
,”
ASME J. Electron. Packag.
,
133
(
4
), p.
041009
.10.1115/1.4005297
5.
Tseng
,
Y.-S.
,
Hung
,
T.-C.
, and
Pei
,
B.-S.
,
2008
, “
Enhancement of Cooling Characteristics for Electronic Cooling by Modifying Substrate Under Natural Convection
,”
ASME J. Electron. Packag.
,
130
(
1
), p.
011006
.10.1115/1.2837524
6.
Mohammadi
,
N.
,
Mohammadi
,
M.
, and
Shafii
,
M. B.
,
2012
, “
A Review of Nanofluidic Pulsating Heat Pipes: Suitable Choices for Thermal Management of Electronics
,”
Front. Heat Pipes
,
3
(
3
), p.
033001
.10.5098/fhp.v3.3.3001
7.
Chu
,
R. C.
,
2004
, “
The Challenges of Electronic Cooling: Past, Current and Future
,”
ASME J. Electron. Packag.
,
126
(
4
), pp.
491
500
.10.1115/1.1839594
8.
Dhillon
,
N. S.
,
Pisano
,
A. P.
,
Hogue
,
C.
, and
Hopcroft
,
M. A.
,
2008
, “
MLHP—A High Heat Flux Localized Cooling Technology for Electronic Substrates
,”
Proceedings of the ASME International Mechanical Engineering Congress and Exposition (IMECE)
, Boston, MA, November 2–6, pp.
621
630
.
9.
Grimes
,
R.
,
Davies
,
M.
,
Punch
,
J.
,
Dalton
,
T.
, and
Cole
,
R.
,
2001
, “
Modeling Electronic Cooling Axial Fan Flows
,”
ASME J. Electron. Packag.
,
123
(
2
), pp.
112
119
.10.1115/1.1339821
10.
Agonafer
,
D.
and
Vimba
,
A.
,
1997
, “
Solid Model Based Preprocessor to CFD Code for Applications to Electronic Cooling Systems
,”
ASME J. Electron. Packag.
,
119
(
2
), pp.
138
143
.10.1115/1.2792220
11.
Cotter
,
T. P.
,
1984
, “
Principles and Prospects of Micro-Heat Pipes
,”
Proceedings of the 5th International Heat Pipe Conference
, Tsukuba, Japan.
12.
Sobhan
,
C. B.
,
Rag
,
R. L.
, and
Peterson
,
G. P.
,
2007
, “
A Review and Comparative Study of the Investigations on Micro Heat Pipes
,”
Int. J. Energy Res.
,
31
(
6–7
), pp.
664
688
.10.1002/er.1285
13.
Qu
,
J.
,
Wu
,
H. Y.
, and
Wang
,
Q.
,
2012
, “
Experimental Investigation of Silicon-Based Micro-Pulsating Heat Pipe for Cooling Electronics
,”
Nanoscale Microscale Thermophys. Eng.
,
16
(
1
), pp.
37
49
.10.1080/15567265.2011.645999
14.
Akachi
,
H.
,
1990
, “
Structure of a Heat Pipe
,” U.S. Patent No. 4921041.
15.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2002
, “
Analysis of Heat Transfer in Unlooped and Looped Pulsating Heat Pipes
,”
Int. J. Numer. Methods Heat Fluid Flow
,
12
(
5
), pp.
585
609
.10.1108/09615530210434304
16.
Zuo
,
Z. J.
,
North
,
M. T.
, and
Wert
,
K. L.
,
2001
, “
High Heat Flux Heat Pipe Mechanism for Cooling of Electronics
,”
IEEE Trans. Compon. Packag. Technol.
,
24
(
2
), pp.
220
225
.10.1109/6144.926386
17.
Shafii
,
M. B.
,
Faghri
,
A.
, and
Zhang
,
Y.
,
2001
, “
Thermal Modeling of Unlooped and Looped Pulsating Heat Pipes
,”
ASME J. Heat Transfer
,
123
(
6
), pp.
1159
1172
.10.1115/1.1409266
18.
Rittidech
,
S.
,
Terdtoon
,
P.
,
Murakami
,
M.
,
Kamonpet
,
P.
, and
Jompakdee
,
W.
,
2003
, “
Correlation to Predict Heat Transfer Characteristics of a Closed-End Oscillating Heat Pipe at Normal Operating Condition
,”
Appl. Therm. Eng.
,
23
(
4
), pp.
497
510
.10.1016/S1359-4311(02)00215-6
19.
Charoensawan
,
P.
,
Khandekar
,
S.
,
Groll
,
M.
, and
Terdtoon
,
P.
,
2003
, “
Closed Loop Pulsating Heat Pipes Part A: Parametric Experimental Investigations
,”
Appl. Therm. Eng.
,
23
(
16
), pp.
2009
2020
.10.1016/S1359-4311(03)00159-5
20.
Buongiorno
,
J.
,
Venerus
,
D.
,
Prabhat
,
N.
,
McKrell
,
T.
,
Townsend
,
J.
,
Christianson
,
R.
,
Tolmachev
,
Y. V.
,
Keblinski
,
P.
,
Hu
,
L.-W.
,
Alvarado
,
J. L.
,
Bang
,
I. C.
,
Bishnoi
,
S. W.
,
Bonetti
,
M.
,
Botz
,
F.
,
Cecere
,
A.
,
Chang
,
Y.
,
Chen
,
G.
,
Chen
,
H.
,
Chung
,
S. J.
,
Chyu
,
M. K.
,
Das
,
S. K.
,
Di Paola
,
R.
,
Ding
,
Y.
,
Dubois
,
F.
,
Dzido
,
G.
,
Eapen
,
J.
,
Escher
,
W.
,
Funfschilling
,
D.
,
Galand
,
Q.
,
Gao
,
J.
,
Gharagozloo
,
P. E.
,
Goodson
,
K. E.
,
Gutierrez
,
J. G.
,
Hong
,
H.
,
Horton
,
M.
,
Hwang
,
K. S.
,
Iorio
,
C. S.
,
Jang
,
S. P.
,
Jarzebski
,
A. B.
,
Jiang
,
Y.
,
Jin
,
L.
,
Kabelac
,
S.
,
Kamath
,
A.
,
Kedzierski
,
M. A.
,
Kieng
,
L. G.
,
Kim
,
C.
,
Kim
,
J.-H.
,
Kim
,
S.
,
Lee
,
S. H.
,
Leong
,
K. C.
,
Manna
,
I.
,
Michel
,
B.
,
Ni
,
R.
,
Patel
,
H. E.
,
Philip
,
J.
,
Poulikakos
,
D.
,
Reynaud
,
C.
,
Savino
,
R.
,
Singh
,
P. K.
,
Song
,
P.
,
Sundararajan
,
T.
,
Timofeeva
,
E.
,
Tritcak
,
T.
,
Turanov
,
A. N.
,
Van Vaerenbergh
,
S.
,
Wen
,
D.
,
Witharana
,
S.
,
Yang
,
C.
,
Yeh
,
W.-H.
,
Zhao
,
X.-Z.
, and
Zhou
,
S. Q.
,
2009
, “
A Benchmark Study on the Thermal Conductivity of Nanofluids
,”
Appl. Phys.
,
106
(
9
), p.
094312
.10.1063/1.3245330
21.
Li
,
Q.
,
Xuan
,
Y.
, and
Wang
,
J.
,
2005
, “
Experimental Investigations on Transport Properties of Magnetic Fluids
,”
Exp. Therm. Fluid Sci.
,
30
(
2
), pp.
109
116
.10.1016/j.expthermflusci.2005.03.021
22.
Wang
,
S.
,
Lin
,
Z.
,
Zhang
,
W.
, and
Chen
,
J.
,
2009
, “
Experimental Study on Pulsating Heat Pipe With Functional Thermal Fluids
,”
Int. J. Heat Mass Transfer
,
52
(
21–22
), pp.
5276
5279
.10.1016/j.ijheatmasstransfer.2009.04.033
23.
Mohammadi
,
M.
,
Mohammadi
,
M.
, and
Shafii
,
M. B.
,
2012
, “
Experimental Investigation of a Pulsating Heat Pipe Using Ferrofluid (Magnetic Nanofluid)
,”
ASME J. Heat Transfer
,
134
(
1
), p.
014504
.10.1115/1.4004805
24.
Qu
,
J.
and
Wu
,
H. Y.
,
2010
, “
Flow Visualization of Silicon-Based Micro Pulsating Heat Pipes
,”
Sci. China, Ser. E: Technol. Sci.
,
53
(
4
), pp.
984
990
.10.1007/s11431-009-0391-y
25.
Youn
,
Y.
and
Kim
,
S.
,
2011
, “
Development of a Compact Micro Pulsating Heat Pipe
,”
Proceedings of the ASME/JSME 8th Thermal Engineering Joint Conference (AJTEC2011)
,
Honolulu
,
HI
,
March 13–17
.
26.
Berger
,
P.
,
Adelman
,
N. B.
,
Beckman
,
K. J.
,
Campbell
,
D. J.
,
Ellis
,
A. B.
, and
Lisensky
,
G. C.
,
1999
, “
Preparation and Properties of an Aqueous Ferrofluid
,”
Chem. Educ.
,
76
(
7
), pp.
943
948
.10.1021/ed076p943
27.
Holman
,
J. P.
,
2001
,
Experimental Methods for Engineers
, 7th ed.,
McGraw-Hill
,
New York
.
28.
Khandekar
,
S.
,
2004
, “
Thermo-Hydrodynamics of Closed Loop Pulsating Heat Pipes
,” Ph.D. thesis, University of Stuttgart, Stuttgart, Germany.
29.
Choi
,
S. U. S.
,
1995
, “
Enhancing Thermal Conductivity of Fluids With Nanoparticles
,”
Developments and Applications of Non-Newtonian Flows
, FED-Vol. 231/MD-Vol.
66
,
D. A.
Siginer
and,
H. P.
Wang
. eds.,
American Society of Mechanical Engineers (ASME)
,
New York
, pp.
99
105
.
30.
Qu
,
J.
,
Wu
,
H. Y.
, and
Cheng
,
P.
,
2010
, “
Thermal Performance of an Oscillating Heat Pipe With Al2O3–Water Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
37
(
2
), pp.
111
115
.10.1016/j.icheatmasstransfer.2009.10.001
31.
Paul
,
G.
,
Sarkar
,
S.
,
Pal
,
T.
,
Das
,
P. K.
, and
Manna
,
I.
,
2012
, “
Concentration and Size Dependence of Nano-Silver Dispersed Water Based Nanofluids
,”
J. Colloid Interface Sci.
,
371
(
1
), pp.
20
27
.10.1016/j.jcis.2011.11.057
32.
Lotfi
,
H.
and
Shafii
,
M. B.
,
2009
, “
Boiling Heat Transfer on a High Temperature Silver Sphere in Nanofluid
,”
Int. J. Therm. Sci.
,
48
(
12
), pp.
2215
2220
.10.1016/j.ijthermalsci.2009.04.009
33.
Lajvardi
,
M.
,
Moghimi-Rad
,
J.
,
Hadi
,
I.
,
Gavili
,
A.
,
Dallali Isfahani
,
T.
,
Zabihi
,
F.
,
Sabbaghzadeh
,
J.
,
2010
, “
Experimental Investigation for Enhanced Ferrofluid Heat Transfer Under Magnetic Field Effect
,”
J. Magn. Magn. Mater.
,
322
(
21
), pp.
3508
3513
.10.1016/j.jmmm.2010.06.054
34.
Qu
,
J.
and
Wu
,
H.
,
2012
, “
Silicon-Based Micro Pulsating Heat Pipe for Cooling Electronics
,”
Adv. Mater. Res.
,
403–408
, pp.
4260
4265
10.4028/www.scientific.net/AMR.403-408.4260.
35.
Misale
,
M.
,
Devia
,
F.
, and
Garibaldi
,
P.
,
2012
, “
Experiments With Al2O3 Nanofluid in a Single-Phase Natural Circulation Mini-Loop: Preliminary Results
,”
Appl. Therm. Eng.
,
40
, pp.
64
70
.10.1016/j.applthermaleng.2012.01.053
36.
Nguyen
,
C. T.
,
Roy
,
G.
,
Gauthier
,
C.
, and
Galanis
,
N.
,
2007
, “
Heat Transfer Enhancement Using Al2O3–Water Nanofluid for an Electronic Liquid Cooling System
,”
Appl. Therm. Eng.
,
27
(
8–9
), pp.
1501
1506
.10.1016/j.applthermaleng.2006.09.028
37.
Selvakumar
,
P.
and
Suresh
,
S.
,
2012
, “
Convective Performance of CuO/Water Nanofluid in an Electronic Heat Sink
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
57
63
.10.1016/j.expthermflusci.2012.01.033
38.
Ijam
,
A.
,
Saidur
,
R.
, and
Ganesan
,
P.
,
2012
, “
Cooling of Minichannel Heat Sink Using Nanofluids
,”
Int. Commun. Heat Mass Transfer
,
39
(
8
), pp.
1188
1194
.10.1016/j.icheatmasstransfer.2012.06.022
39.
Putra
,
N.
,
Septiadi
,
W. N.
,
Rahman
,
H.
, and
Irwansyah
,
R.
,
2012
, “
Thermal Performance of Screen Mesh Wick Heat Pipes With Nanofluids
,”
Exp. Therm. Fluid Sci.
,
40
, pp.
10
17
.10.1016/j.expthermflusci.2012.01.007
40.
Putra
,
N.
,
Yanuar
, and
Iskandar
,
F. N.
,
2011
, “
Application of Nanofluids to a Heat Pipe Liquid-Block and the Thermoelectric Cooling of Electronic Equipment
,”
Exp. Therm. Fluid Sci.
,
35
(
7
), pp.
1274
1281
.10.1016/j.expthermflusci.2011.04.015
41.
Ma
,
H. B.
,
Wilson
,
C.
,
Borgmeyer
,
B.
,
Park
,
K.
,
Yu
,
Q.
,
Choi
,
S. U. S.
, and
Tirumala
,
M.
,
2006
, “
Effect of Nanofluid on the Heat Transport Capability in an Oscillating Heat Pipe
,”
Appl. Phys. Lett.
,
88
(
14
), P.
143116
.10.1063/1.2192971
42.
Seon Ahn
,
H.
and
Hwan Kim
,
M.
,
2012
, “
A Review on Critical Heat Flux Enhancement With Nanofluids and Surface Modification
,”
ASME J. Heat Transfer
,
134
(
2
), p.
024001
.10.1115/1.4005065
43.
Kwark
,
S. M.
,
Moreno
,
G.
,
Kumar
,
R.
,
Moon
,
H.
, and
You
,
S. M.
,
2010
, “
Nanocoating Characterization in Pool Boiling Heat Transfer of Pure Water
,”
Int. J. Heat Mass Transfer
,
53
(
21–22
), pp.
4579
4587
.10.1016/j.ijheatmasstransfer.2010.06.035
44.
Moghadam
,
M. E.
,
Shafii
,
M. B.
, and
Dehkordi
,
E. A.
,
2009
, “
Hydromagnetic Micropump and Flow Controller. Part A: Experiments With Nickel Particles Added to the Water
,”
Exp. Therm. Fluid Sci.
,
33
(
6
), pp.
1021
1028
.10.1016/j.expthermflusci.2009.05.004
45.
Belikov
,
V. G.
and
Kuregyan
,
A. G.
,
2001
, “
Generation and Medicobiological Application of Magnetic Fields and Carriers (Review)
,”
Pharm. Chem.
,
35
(
2
), pp.
88
95
.10.1023/A:1010425005612
You do not currently have access to this content.