In displacement controlled mechanical fatigue of ball grid solder interconnect arrays, decrease in maximum load monitors total increase in crack area in an array while electrical resistance monitors only the area of large cracks that lead to electrical failure. Small cracks with good electrical contact between the crack surfaces have only minor effect on the resistance of the array. In this mechanical fatigue research of ball grid arrays, the fatigue damage was continually followed by simultaneously measuring maximum load and electrical resistance. Experimental details, results, and analysis of the results are given including a Paris relation fit to the data.

References

1.
Kanchanomai
,
C.
, and
Mutoh
,
Y.
,
2007
, “
Fatigue Crack Initiation and Growth in Solder Alloys
,”
Fatigue Fract. Eng. Mater. Struct.
,
30
, pp.
443
457
.10.1111/j.1460-2695.2006.01088.x
2.
Lee
,
K. O.
,
Yu
,
J.
,
Park
,
T. S.
, and
Lee
,
S. B.
,
2004
, “
Low-Cycle Fatigue Characteristics of Sn-Based Solder Joints
,”
J. Electron. Mater.
,
33
(
4
), pp.
249
257
.10.1007/s11664-004-0130-x
3.
Subramanian
,
K. N.
, and
Lee
,
J. G.
,
2006
, “
Effects of Internal Stresses on the Thermomechanical Fatigue of Sn-Based Solder Joints
,”
Mater. Sci. Eng. A
,
421
, pp.
46
56
.10.1016/j.msea.2005.10.005
4.
Mavoori H.
,
1996
, “
Mechanical Properties and Fatigue Lifetime Prediction of Solders for Electronic Applications: Tin-Silver and Tin-Zinc Eutectics
,” Ph.D. dissertation,
Northwestern University
,
Evanston, IL
.
5.
Liang
,
J.
,
Dariavach
,
N.
,
Barr
,
G.
, and
Fang
,
Z.
,
2006
, “
Effects of Strain Rates and Biaxial Stress Conditions on Plastic Yielding and Stress in Solder Alloys
,”
J. Electron. Mater.
,
35
(
2
) pp.
372
379
.10.1007/BF02692459
6.
Li
,
D.
,
Liu
,
C.
, and
Conway
,
P. P.
,
2006
, “
Microstructure and Shear Strength Evolution of Sn-Ag-Cu Solder Bumps During Aging at Different Temperatures
,”
J. Electron. Mater.
,
35
(
3
) pp.
388
398
.10.1007/BF02690524
7.
Song
,
F.
,
Lee
,
S. W. R.
,
Newman
,
K.
,
Sykes
, and
Clark
,
S.
,
2007
, “
Brittle Failure Mechanism of SnAgCu and SnPb Solder Balls During High Speed Ball Shear and Cold Ball Pull Tests
,”
IEEE Electronic Components and Technology Conference
, pp.
364
372
.
8.
Zhao
,
J.
,
Mutoh
,
Y.
,
Miyashita
,
Y.
, and
Wang
,
S. L.
,
2003
, “
Fatigue Crack Growth Behavior of Sn–Pb and Sn-Based Lead-Free Solders
,”
Eng. Fract. Mech.
,
70
, pp.
2187
2197
.10.1016/S0013-7944(02)00252-7
9.
Pringle
,
Raghavan
, and
Malatkar
,
2007
, “
Solder Joint Reliability of BGA Package Under End-User Handling Test Conditions
,”
IEEE Electronic Components and Technology Conference
, pp.
400
406
.
10.
Lau
,
J. H.
,
2011
,
Reliability of Rohs-Compliant 2D and 3D IC Interconnects
,
Electronic Engineering
,
McGraw-Hill, New York
, pp.
89
141
.
11.
Fiedler
,
B. A.
,
2010
, “
Fatigue Failure Kinetics and Structural Changes in Lead-Free Interconnects Due to Mechanical and Thermal Cycling
,” Ph.D. dissertation,
Northwestern University
,
Evanston, IL
.
12.
Paris
,
P. C.
, and
Erdogan
,
F.
,
1963
, “
A Critical Analysis of Crack Propagation Laws
,”
ASME J. Basic Eng.
85
, pp.
528
534
.10.1115/1.3656900
13.
Stolkarts
,
V.
,
1999
, “
Macrocrack Formation Model With Application to the Fatigue of 63Sn-37Pb Solder
,” Ph.D. dissertation,
Northwestern University
,
Evanston, IL
.
14.
Wu
,
J. D.
,
Zheng
,
P. J.
,
Lee
,
C. W.
,
Hung
,
S. C.
, and
Lee
,
J. J.
,
2006
, “
A Study in Flip-Chip UBM/Bump Reliability With Effects of SnPb Solder Composition
,”
Microelectron. Reliab.
46
, pp.
41
52
.10.1016/j.microrel.2005.01.012
15.
Kwon
,
D.
,
Azarian
,
M. H.
, and
Pecht
,
M.
,
2011
, “
Non-Destructive Sensing of Interconnect Failure Mechanisms Using Time Domain Reflectometry
,”
IEEE Sens. J.
,
11
, pp.
1236
1241
.10.1109/JSEN.2010.2088118
16.
Kwon
,
D.
,
Azarian
,
M. H.
, and
Pecht
,
M.
,
2009
, “
Early Detection of Interconnect Degradation by Continuous Monitoring of RF Impedance
,”
IEEE Trans. Device Mater. Reliab.
,
9
, pp.
296
304
.10.1109/TDMR.2009.2020170
17.
Kwon
,
D.
,
Azarian
,
M. H.
, and
Pecht
,
M.
,
2010
, “
Prognostics of Interconnect Degradation Using RF Impedance Monitoring and Sequential Probability Ratio Test
,”
Int. J. Performability Eng.
,
6
, pp.
443
452
.
18.
Azarian
,
M. H.
,
Lando
,
E.
, and
Pecht
,
M.
,
2011
, “
An Analytical Model of the RF Impedance Change Due to Solder Joint Cracking
,”
Fifteenth IEEE Workshop on Signal Propagation on Interconnects
,
Naples, Italy
.
19.
Practical Components, Inc.
,
2009
, “
Dummy Components, Test Boards, Training Kits, Tools and Supplies
,”
Product Data Sheets and Drawings, last accessed
Jan
.
1
,
2012
, pp.
24
78
, http://www.practicalcomponents.com/pdf/Catalog/2009DummyComponentsCatalog.pdf
20.
Kariya
,
Y.
, and
Otsuka
,
M.
,
1998
, “
Mechanical Fatigue Characteristics of Sn-3.5Ag-X
,”
J. Electron. Mater.
,
27
(
11
), pp.
1229
1235
.10.1007/s11664-998-0074-7
21.
Nemat-Nasser
,
S.
,
Keer
,
L. M.
,
Parihar
,
K. S.
,
1978
, “
Unstable Growth of Thermally Induced Interacting Cracks in Brittle Solids
,”
Int. J. Solids Struct.
,
14
, pp.
409
430
.10.1016/0020-7683(78)90007-0
22.
Keer
,
L. M.
,
Nemat-Nasser
,
S.
,
Oranratnachai
,
A.
,
1979
, “
Unstable Growth of Thermally Induced Interacting Cracks in Brittle Solids: Further Results
,”
Int. J. Solids Struct.
,
15
, pp.
111
126
.10.1016/0020-7683(79)90016-7
23.
Liu
,
H. W.
,
1985
, “
Shear Fatigue Crack Growth: A Literature Survey
,”
Fatigue Fract. Eng. Mater. Struct.
,
8
, pp.
295
313
.10.1111/j.1460-2695.1985.tb00429.x
24.
Liaw
,
P. K.
,
Fine
,
M. E.
, and
Davidson
,
D. L.
,
1980
, “
Comparison of Plastic Work of Fatigue Crack Propagation in Low Carbon Steel Measured by Strain Gages and Electron Channeling
,”
Fatigue Fract. Eng. Mater. Struct.
,
3
, pp.
59
74
.10.1111/j.1460-2695.1980.tb01104.x
25.
Tanaka
,
K.
, and
Mura
,
T.
,
1981
, “
A Dislocation Model for Fatigue Crack Initiation
,”
J. Appl. Mech.
,
48
, pp.
97
103
.10.1115/1.3157599
26.
Bhat
,
S. P.
, and
Fine
,
M. E.
,
2001
, “
Fatigue Crack Nucleation in Iron and a High Strength Steel
,”
Mater. Sci. Eng., A
314
, pp.
90
96
.10.1016/S0921-5093(00)01918-3
27.
Solomon
,
H. D.
,
1989
, “
Low-Cycle Fatigue of Surface-Mounted Chip-Carrier Printed Wiring Board Joints
,”
IEEE Trans. Compon., Hybrids, Manuf. Technol.
,
12
(
4
), pp.
473
479
.10.1109/33.49004
You do not currently have access to this content.